Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(5): e12315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202906

RESUMO

The analysis of extracellular vesicles (EV) in blood samples is under intense investigation and holds the potential to deliver clinically meaningful biomarkers for health and disease. Technical variation must be minimized to confidently assess EV-associated biomarkers, but the impact of pre-analytics on EV characteristics in blood samples remains minimally explored. We present the results from the first large-scale EV Blood Benchmarking (EVBB) study in which we systematically compared 11 blood collection tubes (BCT; six preservation and five non-preservation) and three blood processing intervals (BPI; 1, 8 and 72 h) on defined performance metrics (n = 9). The EVBB study identifies a significant impact of multiple BCT and BPI on a diverse set of metrics reflecting blood sample quality, ex-vivo generation of blood-cell derived EV, EV recovery and EV-associated molecular signatures. The results assist the informed selection of the optimal BCT and BPI for EV analysis. The proposed metrics serve as a framework to guide future research on pre-analytics and further support methodological standardization of EV studies.


Assuntos
Vesículas Extracelulares , Benchmarking , Biomarcadores
2.
J Extracell Vesicles ; 10(4): e12059, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33664936

RESUMO

Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/Banti-CD81 and anti-CD63/Banti-CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/Banti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCAM antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis.


Assuntos
Bioensaio/métodos , Bioensaio/normas , Técnicas Biossensoriais/métodos , Calibragem , Vesículas Extracelulares/química , Anticorpos/química , Tecnologia de Fibra Óptica/métodos , Células HEK293 , Humanos , Células MCF-7 , Neoplasias/química , Neoplasias/diagnóstico , Plasma/química , Padrões de Referência , Ressonância de Plasmônio de Superfície/métodos
3.
Nat Protoc ; 16(2): 603-633, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452501

RESUMO

The diagnostic and therapeutic use of extracellular vesicles (EV) is under intense investigation and may lead to societal benefits. Reference materials are an invaluable resource for developing, improving and assessing the performance of regulated EV applications and for quantitative and objective data interpretation. We have engineered recombinant EV (rEV) as a biological reference material. rEV have similar biochemical and biophysical characteristics to sample EV and function as an internal quantitative and qualitative control throughout analysis. Spiking rEV in bodily fluids prior to EV analysis maps technical variability of EV applications and promotes intra- and inter-laboratory studies. This protocol, which is an Extension to our previously published protocol (Tulkens et al., 2020), describes the production, separation and quality assurance of rEV, their dilution and addition to bodily fluids, and the detection steps based on complementary fluorescence, nucleic acid and protein measurements. We demonstrate the use of rEV for method development, data normalization and assessment of pre-analytical variables. The protocol can be adopted by researchers with standard laboratory and basic EV separation/characterization experience and requires ~4-5 d.


Assuntos
Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Líquidos Corporais/química , Vesículas Extracelulares/genética , Engenharia Genética/métodos , Engenharia Genética/normas , Humanos , Padrões de Referência
4.
J Extracell Vesicles ; 9(1): 1736935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284825

RESUMO

Extracellular vesicles (EV) are increasingly being recognized as important vehicles of intercellular communication and promising diagnostic and prognostic biomarkers in cancer. Despite this enormous clinical potential, the plethora of methods to separate EV from biofluids, providing material of highly variable purity, and lacking knowledge regarding methodological repeatability pose a barrier to clinical translation. Urine is considered an ideal proximal fluid for the study of EV in urological cancers due to its direct contact with the urogenital system. We demonstrate that density-based fractionation of urine by bottom-up Optiprep density gradient centrifugation separates EV and soluble proteins with high specificity and repeatability. Mass spectrometry-based proteomic analysis of urinary EV (uEV) in men with benign and malignant prostate disease allowed us to significantly expand the known human uEV proteome with high specificity and identifies a unique biological profile in prostate cancer not uncovered by the analysis of soluble proteins. In addition, profiling the proteome of EV separated from prostate tumour conditioned medium and matched uEV confirms the specificity of the identified uEV proteome for prostate cancer. Finally, a comparative proteomic analysis with uEV from patients with bladder and renal cancer provided additional evidence of the selective enrichment of protein signatures in uEV reflecting their respective cancer tissues of origin. In conclusion, this study identifies hundreds of previously undetected proteins in uEV of prostate cancer patients and provides a powerful toolbox to map uEV content and contaminants ultimately allowing biomarker discovery in urological cancers.

6.
Mol Aspects Med ; 72: 100828, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31711714

RESUMO

Assessment of cell free DNA (cfDNA) and RNA (cfRNA), circulating tumor cells (CTC) and extracellular vesicles (EV) in blood or other bodily fluids can enable early cancer detection, tumor dynamics assessment, minimal residual disease detection and therapy monitoring. However, few liquid biopsy tests progress towards clinical application because results are often discordant and challenging to reproduce. Reproducibility can be enhanced by the development and implementation of standard operating procedures and reference materials to identify and correct for pre-analytical variables. In this review we elaborate on the technological considerations, pre-analytical variables and the use and availability of reference materials for the assessment of liquid biopsy targets in blood and highlight initiatives towards the standardization of liquid biopsy testing.


Assuntos
Ácidos Nucleicos Livres/análise , DNA Tumoral Circulante/análise , Biópsia Líquida/métodos , Biópsia Líquida/normas , Neoplasias/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Vesículas Extracelulares , Humanos , Neoplasias/diagnóstico , Padrões de Referência , Reprodutibilidade dos Testes
7.
Nat Commun ; 10(1): 3288, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337761

RESUMO

Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications.


Assuntos
Vesículas Extracelulares/química , Padrões de Referência , Biomarcadores , Pesquisa Biomédica/métodos , Meios de Cultivo Condicionados , Células HEK293 , Humanos
8.
Nat Methods ; 14(3): 228-232, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245209

RESUMO

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Assuntos
Pesquisa Biomédica , Bases de Dados Bibliográficas , Vesículas Extracelulares/fisiologia , Internacionalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA