Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4817, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558677

RESUMO

Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.


Assuntos
Córtex Auditivo , Percepção Auditiva , Animais , Camundongos , Percepção Auditiva/fisiologia , Ruído , Som , Córtex Auditivo/fisiologia , Adaptação Fisiológica/fisiologia , Estimulação Acústica
2.
J Neurosci ; 43(16): 2885-2906, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36944489

RESUMO

In everyday life, we integrate visual and auditory information in routine tasks such as navigation and communication. While concurrent sound can improve visual perception, the neuronal correlates of audiovisual integration are not fully understood. Specifically, it remains unclear whether neuronal firing patters in the primary visual cortex (V1) of awake animals demonstrate similar sound-induced improvement in visual discriminability. Furthermore, presentation of sound is associated with movement in the subjects, but little is understood about whether and how sound-associated movement affects audiovisual integration in V1. Here, we investigated how sound and movement interact to modulate V1 visual responses in awake, head-fixed mice and whether this interaction improves neuronal encoding of the visual stimulus. We presented visual drifting gratings with and without simultaneous auditory white noise to awake mice while recording mouse movement and V1 neuronal activity. Sound modulated activity of 80% of light-responsive neurons, with 95% of neurons increasing activity when the auditory stimulus was present. A generalized linear model (GLM) revealed that sound and movement had distinct and complementary effects of the neuronal visual responses. Furthermore, decoding of the visual stimulus from the neuronal activity was improved with sound, an effect that persisted even when controlling for movement. These results demonstrate that sound and movement modulate visual responses in complementary ways, improving neuronal representation of the visual stimulus. This study clarifies the role of movement as a potential confound in neuronal audiovisual responses and expands our knowledge of how multimodal processing is mediated at a neuronal level in the awake brain.SIGNIFICANCE STATEMENT Sound and movement are both known to modulate visual responses in the primary visual cortex; however, sound-induced movement has largely remained unaccounted for as a potential confound in audiovisual studies in awake animals. Here, authors found that sound and movement both modulate visual responses in an important visual brain area, the primary visual cortex, in distinct, yet complementary ways. Furthermore, sound improved encoding of the visual stimulus even when accounting for movement. This study reconciles contrasting theories on the mechanism underlying audiovisual integration and asserts the primary visual cortex as a key brain region participating in tripartite sensory interactions.


Assuntos
Córtex Auditivo , Córtex Visual Primário , Camundongos , Animais , Percepção Visual/fisiologia , Som , Movimento , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Estimulação Luminosa/métodos
3.
bioRxiv ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36778269

RESUMO

Cortical neuronal populations can use a multitude of codes to represent information, each with different advantages and trade-offs. The auditory cortex represents sounds via a sparse code, which lies on the continuum between a localist representation with different cells responding to different sounds, and a distributed representation, in which each sound is encoded in the relative response of each cell in the population. Being able to dynamically shift the neuronal code along this axis may help with a variety of tasks that require categorical or invariant representations. Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons may have distinct effects on population neuronal codes, differentially shifting the encoding of sounds between distributed and localist representations. We stimulated optogenetically SST or VIP neurons while simultaneously measuring the response of populations of hundreds of neurons to sounds presented at different sound pressure levels. SST activation shifted the neuronal population responses toward a more localist code, whereas VIP activation shifted them towards a more distributed code. Upon SST activation, sound representations became more discrete, relying on cell identity rather than strength. In contrast, upon VIP activation, distinct sounds activated overlapping populations at different rates. These shifts were implemented at the single-cell level by modulating the response-level curve of monotonic and nonmonotonic neurons. These results suggest a novel function for distinct inhibitory neurons in the auditory cortex in dynamically controlling cortical population codes.

4.
PLoS Comput Biol ; 18(11): e1010700, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378628

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1008016.].

5.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290181

RESUMO

Sensory systems must account for both contextual factors and prior experience to adaptively engage with the dynamic external environment. In the central auditory system, neurons modulate their responses to sounds based on statistical context. These response modulations can be understood through a hierarchical predictive coding lens: responses to repeated stimuli are progressively decreased, in a process known as repetition suppression, whereas unexpected stimuli produce a prediction error signal. Prediction error incrementally increases along the auditory hierarchy from the inferior colliculus (IC) to the auditory cortex (AC), suggesting that these regions may engage in hierarchical predictive coding. A potential substrate for top-down predictive cues is the massive set of descending projections from the AC to subcortical structures, although the role of this system in predictive processing has never been directly assessed. We tested the effect of optogenetic inactivation of the auditory cortico-collicular feedback in awake mice on responses of IC neurons to stimuli designed to test prediction error and repetition suppression. Inactivation of the cortico-collicular pathway led to a decrease in prediction error in IC. Repetition suppression was unaffected by cortico-collicular inactivation, suggesting that this metric may reflect fatigue of bottom-up sensory inputs rather than predictive processing. We also discovered populations of IC units that exhibit repetition enhancement, a sequential increase in firing with stimulus repetition. Cortico-collicular inactivation led to a decrease in repetition enhancement in the central nucleus of IC, suggesting that it is a top-down phenomenon. Negative prediction error, a stronger response to a tone in a predictable rather than unpredictable sequence, was suppressed in shell IC units during cortico-collicular inactivation. These changes in predictive coding metrics arose from bidirectional modulations in the response to the standard and deviant contexts, such that the units in IC responded more similarly to each context in the absence of cortical input. We also investigated how these metrics compare between the anesthetized and awake states by recording from the same units under both conditions. We found that metrics of predictive coding and deviance detection differ depending on the anesthetic state of the animal, with negative prediction error emerging in the central IC and repetition enhancement and prediction error being more prevalent in the absence of anesthesia. Overall, our results demonstrate that the AC provides cues about the statistical context of sound to subcortical brain regions via direct feedback, regulating processing of both prediction and repetition.


Assuntos
Córtex Auditivo , Colículos Inferiores , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Camundongos , Optogenética
6.
Hear Res ; 425: 108488, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35351323

RESUMO

Sensory processing is frequently conceptualized as a linear flow of information from peripheral receptors through hierarchically organized brain regions, ultimately reaching the cortex. In reality, this ascending stream is accompanied by massive descending connections that cascade from the cortex toward more peripheral subcortical structures. In the central auditory system, these feedback connections influence information processing at virtually every level of the pathway, including the thalamus, midbrain, and brainstem, and exert influence even at the level of the cochlea. The auditory cortico-collicular system, which connects the auditory cortex to the auditory midbrain, mediates manifold functions ranging from tuning shifts to defense behavior. In this review, we first summarize recent findings regarding the anatomical organization and physiological properties of the auditory cortico-collicular pathway. We then highlight several new studies that show that this projection system mediates high-level cognitive processes, acoustico-motor behaviors, and auditory plasticity, and discuss the circuit mechanisms through which they are mediated. Finally, we discuss remaining unanswered questions regarding cortico-collicular circuitry and function and potential avenues for future exploration.


Assuntos
Córtex Auditivo , Colículos Inferiores , Estimulação Acústica , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia
7.
Nat Commun ; 13(1): 1167, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246528

RESUMO

Learning to avoid dangerous signals while preserving normal responses to safe stimuli is essential for everyday behavior and survival. Following identical experiences, subjects exhibit fear specificity ranging from high (specializing fear to only the dangerous stimulus) to low (generalizing fear to safe stimuli), yet the neuronal basis of fear specificity remains unknown. Here, we identified the neuronal code that underlies inter-subject variability in fear specificity using longitudinal imaging of neuronal activity before and after differential fear conditioning in the auditory cortex of mice. Neuronal activity prior to, but not after learning predicted the level of specificity following fear conditioning across subjects. Stimulus representation in auditory cortex was reorganized following conditioning. However, the reorganized neuronal activity did not relate to the specificity of learning. These results present a novel neuronal code that determines individual patterns in learning.


Assuntos
Córtex Auditivo , Condicionamento Clássico , Animais , Córtex Auditivo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Humanos , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia
8.
J Neurosci ; 40(48): 9224-9235, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097639

RESUMO

Cortical responses to sensory stimuli are strongly modulated by temporal context. One of the best studied examples of such modulation is sensory adaptation. We first show that in response to repeated tones pyramidal (Pyr) neurons in male mouse auditory cortex (A1) exhibit facilitating and stable responses, in addition to adapting responses. To examine the potential mechanisms underlying these distinct temporal profiles, we developed a reduced spiking model of sensory cortical circuits that incorporated the signature short-term synaptic plasticity (STP) profiles of the inhibitory parvalbumin (PV) and somatostatin (SST) interneurons. The model accounted for all three temporal response profiles as the result of dynamic changes in excitatory/inhibitory balance produced by STP, primarily through shifts in the relative latency of Pyr and inhibitory neurons. Transition between the three response profiles was possible by changing the strength of the inhibitory PV→Pyr and SST→Pyr synapses. The model predicted that a unit's latency would be related to its temporal profile. Consistent with this prediction, the latency of stable units was significantly shorter than that of adapting and facilitating units. Furthermore, because of the history-dependence of STP the model generated a paradoxical prediction: that inactivation of inhibitory neurons during one tone would decrease the response of A1 neurons to a subsequent tone. Indeed, we observed that optogenetic inactivation of PV neurons during one tone counterintuitively decreased the spiking of Pyr neurons to a subsequent tone 400 ms later. These results provide evidence that STP is critical to temporal context-dependent responses in the sensory cortex.SIGNIFICANCE STATEMENT Our perception of speech and music depends strongly on temporal context, i.e., the significance of a stimulus depends on the preceding stimuli. Complementary neural mechanisms are needed to sometimes ignore repetitive stimuli (e.g., the tic of a clock) or detect meaningful repetition (e.g., consecutive tones in Morse code). We modeled a neural circuit that accounts for diverse experimentally-observed response profiles in auditory cortex (A1) neurons, based on known forms of short-term synaptic plasticity (STP). Whether the simulated circuit reduced, maintained, or enhanced its response to repeated tones depended on the relative dominance of two different types of inhibitory cells. The model made novel predictions that were experimentally validated. Results define an important role for STP in temporal context-dependent perception.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Parvalbuminas/fisiologia , Somatostatina/fisiologia , Algoritmos , Animais , Córtex Auditivo/citologia , Simulação por Computador , Masculino , Camundongos , Optogenética , Células Piramidais/fisiologia
9.
PLoS Comput Biol ; 16(7): e1008016, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716912

RESUMO

The mammalian sensory cortex is composed of multiple types of inhibitory and excitatory neurons, which form sophisticated microcircuits for processing and transmitting sensory information. Despite rapid progress in understanding the function of distinct neuronal populations, the parameters of connectivity that are required for the function of these microcircuits remain unknown. Recent studies found that two most common inhibitory interneurons, parvalbumin- (PV) and somatostatin-(SST) positive interneurons control sound-evoked responses, temporal adaptation and network dynamics in the auditory cortex (AC). These studies can inform our understanding of parameters for the connectivity of excitatory-inhibitory cortical circuits. Specifically, we asked whether a common microcircuit can account for the disparate effects found in studies by different groups. By starting with a cortical rate model, we find that a simple current-compensating mechanism accounts for the experimental findings from multiple groups. They key mechanisms are two-fold. First, PVs compensate for reduced SST activity when thalamic inputs are strong with less compensation when thalamic inputs are weak. Second, SSTs are generally disinhibited by reduced PV activity regardless of thalamic input strength. These roles are augmented by plastic synapses. These roles reproduce the differential effects of PVs and SSTs in stimulus-specific adaptation, forward suppression and tuning-curve adaptation, as well as the influence of PVs on feedforward functional connectivity in the circuit. This circuit exhibits a balance of inhibitory and excitatory currents that persists on stimulation. This approach brings together multiple findings from different laboratories and identifies a circuit that can be used in future studies of upstream and downstream sensory processing.


Assuntos
Córtex Auditivo/fisiologia , Biologia Computacional , Interneurônios/fisiologia , Modelos Neurológicos , Optogenética , Algoritmos , Animais , Simulação por Computador , Humanos , Interneurônios/classificação , Sinapses/fisiologia , Tálamo/fisiologia , Fatores de Tempo
10.
Elife ; 92020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32003747

RESUMO

The extensive feedback from the auditory cortex (AC) to the inferior colliculus (IC) supports critical aspects of auditory behavior but has not been extensively characterized. Previous studies demonstrated that activity in IC is altered by focal electrical stimulation and pharmacological inactivation of AC, but these methods lack the ability to selectively manipulate projection neurons. We measured the effects of selective optogenetic modulation of cortico-collicular feedback projections on IC sound responses in mice. Activation of feedback increased spontaneous activity and decreased stimulus selectivity in IC, whereas suppression had no effect. To further understand how microcircuits in AC may control collicular activity, we optogenetically modulated the activity of different cortical neuronal subtypes, specifically parvalbumin-positive (PV) and somatostatin-positive (SST) inhibitory interneurons. We found that modulating the activity of either type of interneuron did not affect IC sound-evoked activity. Combined, our results identify that activation of excitatory projections, but not inhibition-driven changes in cortical activity, affects collicular sound responses.


How do we hear the world around us? Hearing begins when hair cells in the inner ear translate incoming sound waves into electrical signals. These signals travel via the auditory nerve and the brainstem to the midbrain, where an area called the inferior colliculus processes them. The inferior colliculus then passes the signals on to another area deep within the brain, the thalamus, which processes the signals further before it too passes them on to an area of the brain's outer layer called the auditory cortex. At each stage of the auditory pathway, the signals undergo more complex processing than at the previous stage. Researchers have tended to think of this pathway as a one-way route from the ear to the brain. But in reality, feedback occurs at various points along the pathway, enabling areas that do higher processing to shape the responses of areas earlier in the pathway. This feedback is particularly prevalent in the auditory system, where one such strong feedback route is from the auditory cortex to the inferior colliculus. This reverse connection helps animals learn new behavioral responses to sounds, for example, to run away from a loud noise. By manipulating the activity of this pathway in mice using a technique called optogenetics, Blackwell et al. provide further clues to how the auditory pathway works. Optogenetics involves introducing light-sensitive ion channels into neurons, and then using light to activate or inhibit those neurons on demand. Blackwell et al. show that activating the feedback pathway from the auditory cortex to the inferior colliculus in awake mice changes how the inferior colliculus responds to sounds. By contrast, inhibiting the pathway has no effect on inferior colliculus responses. This suggests that the feedback pathway is not active all the time, but instead influences inferior colliculus activity only during specific behavior, for example, perhaps when we are listening for a specific sound like the ringing of a phone. Understanding how the brain processes sound is important for understanding how we communicate and why we appreciate music. It could also help in treating hearing loss. Stimulating the inferior colliculus using a device implanted in the brainstem can improve hearing in people with certain types of deafness. Strengthening or weakening the feedback pathway from the auditory cortex to the inferior colliculus could make these implants more effective. In the future, it may even be possible that stimulating the pathway directly could restore hearing without any implant being required.


Assuntos
Córtex Auditivo/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica , Animais , Retroalimentação Sensorial/fisiologia , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
12.
Nat Neurosci ; 22(9): 1381-1382, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31455885
13.
Cell Rep ; 28(3): 605-615.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315041

RESUMO

Many forms of behavior require selective amplification of neuronal representations of relevant environmental signals. Emotional learning enhances sensory responses in the sensory cortex, yet the underlying circuits remain poorly understood. We identify a pathway between the basolateral amygdala (BLA), an emotional learning center in the mouse brain, and the inhibitory reticular nucleus of the thalamus (TRN). Optogenetic activation of BLA suppressed spontaneous, but not tone-evoked, activity in the auditory cortex (AC), amplifying tone-evoked responses. Viral tracing identified BLA projections terminating at TRN. Optogenetic activation of amygdala-TRN projections further amplified tone-evoked responses in the auditory thalamus and cortex. The results are explained by a computational model of the thalamocortical circuitry, in which activation of TRN by BLA primes thalamocortical neurons to relay relevant sensory input. This circuit mechanism shines a neural spotlight on behaviorally relevant signals and provides a potential target for the treatment of neuropsychological disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Potenciais Evocados Auditivos , Núcleos Talâmicos/fisiologia , Tonsila do Cerebelo/citologia , Animais , Córtex Auditivo/citologia , Córtex Auditivo/fisiologia , Percepção Auditiva , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/citologia
14.
Trends Neurosci ; 42(1): 56-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297085

RESUMO

Speech has long been recognized as 'special'. Here, we suggest that one of the reasons for speech being special is that our auditory system has evolved to encode it in an efficient, optimal way. The theory of efficient neural coding argues that our perceptual systems have evolved to encode environmental stimuli in the most efficient way. Mathematically, this can be achieved if the optimally efficient codes match the statistics of the signals they represent. Experimental evidence suggests that the auditory code is optimal in this mathematical sense: statistical properties of speech closely match response properties of the cochlea, the auditory nerve, and the auditory cortex. Even more interestingly, these results may be linked to phenomena in auditory and speech perception.


Assuntos
Percepção Auditiva/fisiologia , Nervo Coclear/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Animais , Córtex Auditivo/fisiologia , Humanos
15.
J Neurosci ; 38(8): 2094-2105, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29367406

RESUMO

Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity.SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination acuity, predictable from the effects on cortical responses to tones. The same manipulations sometimes produced opposite changes in the behavior of different individuals, supporting theoretical predictions for inhibition-stabilized networks.


Assuntos
Córtex Auditivo/fisiologia , Simulação por Computador , Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
16.
Nat Commun ; 8(1): 2165, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255268

RESUMO

An important outstanding question in auditory neuroscience is to identify the mechanisms by which specific motifs within inter-connected neural circuits affect auditory processing and, ultimately, behavior. In the auditory cortex, a combination of large-scale electrophysiological recordings and concurrent optogenetic manipulations are improving our understanding of the role of inhibitory-excitatory interactions. At the same time, computational approaches have grown to incorporate diverse neuronal types and connectivity patterns. However, we are still far from understanding how cortical microcircuits encode and transmit information about complex acoustic scenes. In this review, we focus on recent results identifying the special function of different cortical neurons in the auditory cortex and discuss a computational framework for future work that incorporates ideas from network science and network dynamics toward the coding of complex auditory scenes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Córtex Auditivo/citologia , Fenômenos Eletrofisiológicos , Humanos , Modelos Neurológicos
17.
Cell Rep ; 21(4): 878-890, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069595

RESUMO

Neuronal stimulus selectivity is shaped by feedforward and recurrent excitatory-inhibitory interactions. In the auditory cortex (AC), parvalbumin- (PV) and somatostatin-positive (SOM) inhibitory interneurons differentially modulate frequency-dependent responses of excitatory neurons. Responsiveness of neurons in the AC to sound is also dependent on stimulus history. We found that the inhibitory effects of SOMs and PVs diverged as a function of adaptation to temporal repetition of tones. Prior to adaptation, suppressing either SOM or PV inhibition drove both increases and decreases in excitatory spiking activity. After adaptation, suppressing SOM activity caused predominantly disinhibitory effects, whereas suppressing PV activity still evoked bi-directional changes. SOM, but not PV-driven inhibition, dynamically modulated frequency tuning with adaptation. Unlike PV-driven inhibition, SOM-driven inhibition elicited gain-like increases in frequency tuning reflective of adaptation. Our findings suggest that distinct cortical interneurons differentially shape tuning to sensory stimuli across the neuronal receptive field, altering frequency selectivity of excitatory neurons during adaptation.


Assuntos
Adaptação Fisiológica , Córtex Auditivo/fisiologia , Interneurônios/fisiologia , Animais , Córtex Auditivo/citologia , Potenciais Evocados Auditivos , Interneurônios/metabolismo , Masculino , Camundongos , Inibição Neural , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
18.
Cereb Cortex ; 27(3): 2385-2402, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095823

RESUMO

Natural sounds exhibit statistical variation in their spectrotemporal structure. This variation is central to identification of unique environmental sounds and to vocal communication. Using limited resources, the auditory system must create a faithful representation of sounds across the full range of variation in temporal statistics. Imaging studies in humans demonstrated that the auditory cortex is sensitive to temporal correlations. However, the mechanisms by which the auditory cortex represents the spectrotemporal structure of sounds and how neuronal activity adjusts to vastly different statistics remain poorly understood. In this study, we recorded responses of neurons in the primary auditory cortex of awake rats to sounds with systematically varied temporal correlation, to determine whether and how this feature alters sound encoding. Neuronal responses adapted to changing stimulus temporal correlation. This adaptation was mediated by a change in the firing rate gain of neuronal responses rather than their spectrotemporal properties. This gain adaptation allowed neurons to maintain similar firing rates across stimuli with different statistics, preserving their ability to efficiently encode temporal modulation. This dynamic gain control mechanism may underlie comprehension of vocalizations and other natural sounds under different contexts, subject to distortions in temporal correlation structure via stretching or compression.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação , Animais , Eletrodos Implantados , Modelos Lineares , Masculino , Dinâmica não Linear , Ratos Long-Evans , Processamento de Sinais Assistido por Computador , Fatores de Tempo
19.
Neuroimage ; 133: 144-150, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26956907

RESUMO

Sensory systems are thought to have evolved to efficiently represent the full range of sensory stimuli encountered in the natural world. The statistics of natural environmental sounds are characterized by scale-invariance: the property of exhibiting similar patterns at different levels of observation. The statistical structure of scale-invariant sounds remains constant at different spectro-temporal scales. Scale-invariance plays a fundamental role in how efficiently animals and human adults perceive acoustic signals. However, the developmental origins and brain correlates of the neural encoding of scale-invariant environmental sounds remain unexplored. Here, we investigate whether the human brain extracts the statistical property of scale-invariance. Synthetic sounds generated by a mathematical model to respect scale-invariance or violate it were presented to newborns. In alternating blocks, the two sound types were presented together in an alternating fashion, whereas in non-alternating blocks, only one type of sound was presented. Newborns' brain responses were measured using near-infrared spectroscopy. We found that scale-invariant and variable-scale sounds were discriminated by the newborn brain, as suggested by differential activation in the left frontal and temporal areas to alternating vs. non-alternating blocks. These results indicate that newborns already detect and encode scale-invariance as a characteristic feature of acoustic stimuli. This suggests that the mathematical principle of efficient coding of information guides the auditory neural code from the beginning of human development, a finding that may help explain how evolution has prepared the brain for perceiving the natural world.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Ecossistema , Rede Nervosa/fisiologia , Feminino , Humanos , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Eur J Neurosci ; 43(6): 751-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663571

RESUMO

Natural auditory scenes possess highly structured statistical regularities, which are dictated by the physics of sound production in nature, such as scale-invariance. We recently identified that natural water sounds exhibit a particular type of scale invariance, in which the temporal modulation within spectral bands scales with the centre frequency of the band. Here, we tested how neurons in the mammalian primary auditory cortex encode sounds that exhibit this property, but differ in their statistical parameters. The stimuli varied in spectro-temporal density and cyclo-temporal statistics over several orders of magnitude, corresponding to a range of water-like percepts, from pattering of rain to a slow stream. We recorded neuronal activity in the primary auditory cortex of awake rats presented with these stimuli. The responses of the majority of individual neurons were selective for a subset of stimuli with specific statistics. However, as a neuronal population, the responses were remarkably stable over large changes in stimulus statistics, exhibiting a similar range in firing rate, response strength, variability and information rate, and only minor variation in receptive field parameters. This pattern of neuronal responses suggests a potentially general principle for cortical encoding of complex acoustic scenes: while individual cortical neurons exhibit selectivity for specific statistical features, a neuronal population preserves a constant response structure across a broad range of statistical parameters.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Modelos Neurológicos , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Potenciais Evocados Auditivos , Masculino , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA