Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 39: 101793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161580

RESUMO

Plasminogen activator inhibitor-1 (PAI-1/Serpin E1) is classically known for its antifibrinolytic activity via inhibiting uPA and tPA of the fibrinolytic pathway. PAI-1 has a paradoxical role in tumor progression, and its molecular functions are poorly understood. PAI-1 is a widely accepted secretory protease inhibitor, however, a study suggested the localization of PAI-1 in the cytoplasm and the nucleus. Besides the plethora of its biological functions as a secretory protein, intracellular localization, and functions of PAI-1 remain unexplored at the molecular level. In this study, using various in silico approaches, we showed that PAI-1 possesses a nuclear export signal. Using the CRM1-specific inhibitor leptomycin B, we demonstrated that PAI-1 has a functional CRM1-dependent NES, indicating the possibility of its nuclear localization. Further, we confirm that PAI-1 is localized in the nucleus of endothelial cells using fluorescence microscopy and immunoprecipitation. Notably, we identified an unconventional distribution of PAI-1 in the PML bodies of the nucleus of normal endothelial cells, while the protein was restricted in the cytoplasm of slow-growing cells. The data showed that the localization of PAI-1 in PML bodies is highly correlated with the growth potential of endothelial cells. This conditional nucleocytoplasmic shuttling of PAI-1 during the aging of cells could impart a strong link to its age-related functions and tumor progression. Together, this study identifies the novel behavior of PAI-1 that might be linked with cell aging and may be able to unveil the elusive role of PAI-1 in tumor progression.

2.
Reprod Med Biol ; 20(3): 267-276, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262394

RESUMO

PURPOSE: Extracellular matrix remodeling is essential for extravillous trophoblast (EVT) cell migration and invasion during placental development and regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). Sphingosine kinases (SPHK1 and SPHK2) synthesize sphingosine-1-phosphate (S1P), which works either intracellularly or extracellularly via its receptors S1PR1-5 in an autocrine or paracrine manner. The role of SPHKs/S1P in regulating the expression of MMPs and TIMPs in EVT is mostly unknown and forms the primary objective of the study. METHODS: HTR-8/SVneo cells were used as a model of EVT. To inhibit the expression of SPHKs, cells were treated with specific inhibitors, SK1-I and SKI-II, or gene-specific siRNAs. The expressions of MMPs and TIMPs were estimated by qPCR. RESULTS: We demonstrated that SPHK1, MMP1-3, and TIMP1-3 were highly expressed in HTR-8/SVneo cells. We found that treatment of cells with SK1-I, SKI-II, and knockdown of SPHK1 or SPHK2 increased the expression of MMP1, MMP3, and TIMP3. The addition of extracellular S1P inhibits the upregulation of MMPs and TIMPs in treated cells. CONCLUSIONS: SPHKs negatively regulate the expression of MMP1, MMP3, and TIMP3. The level of intracellular S1P acts as a negative feedback switch for MMP1, MMP3, and TIMP3 expression in EVT cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA