Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Hazard Mater ; 480: 135929, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39321483

RESUMO

This study investigates the use of multi-element compound-specific isotope analysis (ME-CSIA) to monitor degradation processes of methoxychlor, a persistent organochlorine insecticide. Laboratory experiments examined the kinetics, release of transformation products, and carbon and chlorine isotope effects during methoxychlor degradation through alkaline hydrolysis, oxidation with alkaline-activated persulfate, and biotic reductive dechlorination. Results showed that hydrolysis and oxidation did not cause significant carbon and chlorine isotope fractionation, indicating that C-H rather than C-Cl bond cleavage was the rate-determining step. Conversely, biotic reductive dechlorination by a field-derived microcosm under strictly anoxic conditions displayed significant carbon (εC = -0.9 ± 0.3 ‰) and chlorine (εCl = -1.9 ± 1.0 ‰) isotope fractionation. Its corresponding calculated dual isotope slope (ΛC/Cl = 0.4 ± 0.1) and apparent kinetic isotope effects (AKIEC = 1.014 ± 0.005 and AKIECl = 1.006 ± 0.003) indicate a C-Cl bond cleavage as the rate-determining step, highlighting the difference with respect to the other studied degradation mechanisms. Changes in the microbial community diversity revealed that families such as Dojkabacteria, Anaerolineaceae, Dysgonomonadaceae, Bacteroidetes vadinHA17, Pseudomonadaceae, and Spirochaetaceae, may be potential agents of methoxychlor reductive dechlorination under anoxic conditions. This study advances the understanding of degradation mechanisms of methoxychlor and improves the ability to track its transformation in contaminated environments, including for the first time an isotopic perspective.

2.
Microbiologyopen ; 13(4): e1433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190020

RESUMO

Carbon and chlorine isotope effects for biotransformation of chloroform by different microbes show significant variability. Reductive dehalogenases (RDase) enzymes contain different cobamides, affecting substrate preferences, growth yields, and dechlorination rates and extent. We investigate the role of cobamide type on carbon and chlorine isotopic signals observed during reductive dechlorination of chloroform by the RDase CfrA. Microcosm experiments with two subcultures of a Dehalobacter-containing culture expressing CfrA-one with exogenous cobamide (Vitamin B12, B12+) and one without (to drive native cobamide production)-resulted in a markedly smaller carbon isotope enrichment factor (εC, bulk) for B12- (-22.1 ± 1.9‰) compared to B12+ (-26.8 ± 3.2‰). Both cultures exhibited significant chlorine isotope fractionation, and although a lower εCl, bulk was observed for B12- (-6.17 ± 0.72‰) compared to B12+ (-6.86 ± 0.77‰) cultures, these values are not statistically different. Importantly, dual-isotope plots produced identical slopes of ΛCl/C (ΛCl/C, B12+ = 3.41 ± 0.15, ΛCl/C, B12- = 3.39 ± 0.15), suggesting the same reaction mechanism is involved in both experiments, independent of the lower cobamide bases. A nonisotopically fractionating masking effect may explain the smaller fractionations observed for the B12- containing culture.


Assuntos
Biotransformação , Clorofórmio , Vitamina B 12 , Clorofórmio/metabolismo , Vitamina B 12/metabolismo , Cloro/metabolismo , Isótopos de Carbono/metabolismo , Cobamidas/metabolismo
3.
Sci Total Environ ; 931: 172858, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714260

RESUMO

Multi-element compound-specific stable isotope analysis (ME-CSIA) allows monitoring the environmental behavior and transformation of most common and persistent contaminants. Recent advancements in analytical techniques have extended the applicability of ME-CSIA to organic micropollutants, including pesticides. Nevertheless, the application of this methodology remains unexplored concerning harmful insecticides such as methoxychlor, a polar organochlorine pesticide usually detected in soil and groundwater. This study introduces methods for dual carbon and chlorine compound-specific stable isotope analysis (δ13C-CSIA and δ37Cl-CSIA) of both methoxychlor and its metabolite, methoxychlor olefin, with a sensitivity down to 10 and 100 mg/L, and a precision lower than 0.3 and 0.5 ‰ for carbon and chlorine CSIA, respectively. Additionally, three extraction and preconcentration techniques suitable for ME-CSIA of the target pesticides at environmentally relevant concentrations were also developed. Solid-phase extraction (SPE) and liquid-solid extraction (LSE) effectively extracted methoxychlor (107 ± 27 % and 87 ± 13 %, respectively) and its metabolite (91 ± 27 % and 106 ± 14 %, respectively) from water and aquifer slurry samples, respectively, with high accuracy (Δδ13C and Δδ37Cl ≤ ± 1 ‰). Combining CSIA with polar organic chemical integrative samplers (POCISs) for the extraction of methoxychlor and methoxychlor olefin from water samples resulted in insignificant fractionation for POCIS-CSIA (Δδ13C ≤ ± 1 ‰). A relevant sorption of methoxychlor was detected within the polyethersulfones membranes of the POCISs resulting in temporary carbon isotope fractionation depending on the sorbed mass fraction during the first deployment days. This highlights the critical role of the interactions of polar analytes with POCIS sorbents and membranes in the performance of this method. Altogether, this study proposes a proof of concept for ME-CSIA of methoxychlor and its metabolites, opening the door for future investigations of their sources and transformation processes in contaminated sites.

4.
Anal Chem ; 96(21): 8510-8517, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38738665

RESUMO

Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ33S and δ34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 µg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ34S, demonstrating the future potential of such an approach.

5.
Clin Nutr ESPEN ; 58: 388-396, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057031

RESUMO

Effective treatments of obesity focusing on energy expenditure (EE) are needed. To evaluate future EE-modulating drug candidates, appropriate animal models and methods to assess EE are needed. This study aimed to evaluate the stable isotope 13C-bicarbonate method (13C-BM) for estimating EE in Göttingen minipigs under basal and drug-treated conditions. Four experiments (Expt.1-4) were conducted to assess: 1) the 13C-BM reproducibility using breath sample collection (n = 8), on two consecutive days, 2) the effect of two dose levels (5 and 10 mg/kg body weight (BW)) of the mitochondrial uncoupler dinitrophenol (DNP) in a crossover design (n = 8), 3) sampling method agreement; blood vs. exhaled air (n = 6) and 4) 13C-BM using constant isotope infusion compared with indirect calorimetry (IC) (n = 3). Results correlated significantly (p < 0.001) between days (Expt.1), with an average coefficient of variance of 5.4 ± 2.3%. Administration of 10 mg DNP/kg BW increased (p < 0.01) EE by 33.2 ± 6.4% (Expt.2). Results based on different sampling methods correlated significantly (p < 0.001) and EE increased after 10 mg DNP/kg BW (p < 0.05) in Expt.3. However, results based on blood sampling were significantly higher (p < 0.01) than those of exhaled air. No effect of DNP and significantly different EE results (p < 0.05) was observed in a limited number of animals, when constant isotope infusion and blood sampling was compared with IC (Expt.4). In conclusion, the 13C-BM is useful for investigating treatment effects on EE in minipigs. However, further validation under standardized conditions is needed to provide accurate estimates of the 13C recovery factor and respiratory quotient, both of decisive importance when using the 13C-BM.


Assuntos
Bicarbonatos , Metabolismo Energético , Animais , Isótopos , Preparações Farmacêuticas , Reprodutibilidade dos Testes , Suínos , Porco Miniatura , Estudos Cross-Over
6.
Anal Chem ; 95(44): 16272-16278, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37878670

RESUMO

Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichment factor (εH) and for field application where the concentrations of contaminants are relatively low. In this study, a data treatment approach was developed to obtain accurate δ2H values below the linear range. The core concept was to use a logarithmic function to fit the δ2H values below the linear range and then adjust the δ2H values below the linear range into the linear range by using the fitted logarithmic equation. Moreover, the adjusted δ2H values were calibrated by using laboratory reference materials, e.g., n-alkanes. Tris(2-chloroethyl) phosphate (TCEP) and hexachlorocyclohexane (HCH) isomers were selected as examples of complex heteroatom-bearing compounds to develop the data treatment approach. This data treatment approach was then tested using δ2H values from a TCEP transformation experiment with OH radicals. Comparable δ2H values and εH between the low-concentration experiment and the reference experiment were obtained using the developed approach. Therefore, the developed data treatment approach enables a possibility of determining the hydrogen isotopic compositions of organic components in low concentrations. It is especially valuable for determining organic contaminants in environmental samples, which are usually present in low concentrations.

7.
FEMS Microbiol Ecol ; 98(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700008

RESUMO

Reductive dehalogenases (RDases) are corrinoid-dependent enzymes that reductively dehalogenate organohalides in respiratory processes. By comparing isotope effects in biotically catalyzed reactions to reference experiments with abiotic corrinoid catalysts, compound-specific isotope analysis (CSIA) has been shown to yield valuable insights into enzyme mechanisms and kinetics, including RDases. Here, we report isotopic fractionation (ε) during biotransformation of chloroform (CF) for carbon (εC = -1.52 ± 0.34‰) and chlorine (εCl = -1.84 ± 0.19‰), corresponding to a ΛC/Cl value of 1.13 ± 0.35. These results are highly suppressed compared to isotope effects observed both during CF biotransformation by another organism with a highly similar RDase (>95% sequence identity) at the amino acid level, and to those observed during abiotic dehalogenation of CF. Amino acid differences occur at four locations within the two different RDases' active sites, and this study examines whether these differences potentially affect the observed εC, εCl, and ΛC/Cl. Structural protein models approximating the locations of the residues elucidate possible controls on reaction mechanisms and/or substrate binding efficiency. These four locations are not conserved among other chloroalkane reducing RDases with high amino acid similarity (>90%), suggesting that these locations may be important in determining isotope fractionation within this homologous group of RDases.


Assuntos
Carbono , Corrinoides , Aminoácidos , Biodegradação Ambiental , Isótopos de Carbono , Domínio Catalítico , Cloro/química
8.
Water Res ; 207: 117809, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741903

RESUMO

Industrial chemicals are frequently detected in sediments due to a legacy of chemical spills. Globally, site remedies for groundwater and sediment decontamination include natural attenuation by in situ abiotic and biotic processes. Compound-specific isotope analysis (CSIA) is a diagnostic tool to identify, quantify, and characterize degradation processes in situ, and in some cases can differentiate between abiotic degradation and biodegradation. This study reports high-resolution carbon, chlorine, and hydrogen stable isotope profiles for monochlorobenzene (MCB), and carbon and hydrogen stable isotope profiles for benzene, coupled with measurements of pore water concentrations in contaminated sediments. Multi-element isotopic analysis of δ13C and δ37Cl for MCB were used to generate dual-isotope plots, which for 2 locations at the study site resulted in ΛC/Cl(130) values of 1.42 ± 0.19 and ΛC/Cl(131) values of 1.70 ± 0.15, consistent with theoretical calculations for carbon-chlorine bond cleavage (ΛT = 1.80 ± 0.31) via microbial reductive dechlorination. For benzene, significant δ2H (122‰) and δ13C (6‰) depletion trends, followed by enrichment trends in δ13C (1.6‰) in the upper part of the sediment, were observed at the same location, indicating not only production of benzene due to biodegradation of MCB, but subsequent biotransformation of benzene itself to nontoxic end-products. Degradation rate constants calculated independently using chlorine isotopic data and carbon isotopic data, respectively, agreed within uncertainty thus providing multiple lines of evidence for in situ contaminant degradation via reductive dechlorination and providing the foundation for a novel approach to determine site-specific in situ rate estimates essential for the prediction of remediation outcomes and timelines.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Anaerobiose , Benzeno/análise , Biodegradação Ambiental , Isótopos de Carbono/análise , Clorobenzenos , Poluentes Químicos da Água/análise
9.
Anal Chem ; 92(21): 14685-14692, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095571

RESUMO

Compound-specific isotope analysis of sulfur (δ34S-CSIA) in organic compounds was established in the last decade employing gas chromatography connected to multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS). However, δ33S-CSIA has not yet been reported so far. In this study, we present a method for the simultaneous determination of δ33S and δ34S in organic compounds by GC-MC-ICPMS applying medium- and also low-mass-resolution modes. The method was validated using the international isotope reference materials IAEA-S-1, IAEA-S-2, and IAEA-S-3. Overall analytical uncertainty including normalization and reproducibility for δ33S and δ34S was usually better than ±0.2 mUr (σ) for analytes containing at least 100 pmol of S. Further, it is demonstrated that, despite small isobaric interferences, results obtained at low mass resolution are indistinguishable from medium mass resolution offering the benefit of increased sensitivity and versatility of this method. Additionally, the method was applied for the δ33S and δ34S isotope analysis of industrially produced organic compounds to investigate potential mass-independent fractionation (MIF). The relation between δ34S and δ33S in these compounds followed a mass-dependent fractionation trend (MDF; Δ33S ≤ ±0.2 mUr). Degradation of dimethyl disulfide by direct photolysis caused a small but significant MIF (Δ33S = 0.55 ± 0.04 mUr, n = 3), demonstrating sufficient sensitivity of the method for these types of studies.

10.
Anal Chem ; 92(3): 2383-2387, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898453

RESUMO

There is a strong need for careful quality control in hydrogen compound-specific stable isotope analysis (CSIA) of halogenated compounds. This arises in part due to the lack of universal design of the chromium (Cr) reactors. In this study, factors that optimize the critical performance parameter, linearity, for the Cr reduction method for hydrogen isotope analysis were identified and evaluated. These include the effects of short and long vertically mounted reactors and temperature profiles on trapping of Cl to ensure accurate and precise hydrogen isotope measurements. This paper demonstrates the critical parameters that need consideration to optimize any Cr reactor applications to ensure the accuracy of δ2H analysis for organic compounds and to enhance intercomparability for both international standards and reference materials run by continuous flow versus an elemental analyzer.

11.
ISME J ; 14(2): 399-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636364

RESUMO

Trichodesmium is an important dinitrogen (N2)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N2 fixation. However, rates of these transformations and concentration gradients of N compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling and numeric modelling to explore carbon fixation, N cycling processes as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N2 fixation occurring mostly during the day. Ten percent of the fixed N was released as ammonium after 12-h incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N transformation network was characterised by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were ~60-200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.


Assuntos
Nitrogênio/metabolismo , Trichodesmium/metabolismo , Compostos de Amônio/metabolismo , Processos Autotróficos , Carbono/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Desnitrificação , Nitratos/metabolismo , Nitrificação , Ciclo do Nitrogênio , Fixação de Nitrogênio , Oxigênio/metabolismo , Água do Mar/microbiologia
12.
Anal Chem ; 91(19): 12290-12297, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454232

RESUMO

Increasing applications of compound-specific chlorine isotope analysis (CSIA) emphasize the need for chlorine isotope standards that bracket a wider range of isotope values in order to ensure accurate results. With one exception (USGS38), however, all international chlorine isotope reference materials (chloride and perchlorate salts) fall within the narrow range of one per mille. Furthermore, compound-specific working standards are required for chlorine CSIA but are not available for most organic substances. We took advantage of isotope effects in chemical dehalogenation reactions to generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. Calibration against the international reference standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by complementary methods (gas chromatography-isotope ratio mass spectrometry, GC-IRMS, versus gas chromatography-multicollector inductively coupled plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. The possibility to generate chlorine isotope in-house standards with pronounced shifts in isotope values offers a much-needed basis for accurate chlorine CSIA.

13.
Anal Chem ; 89(17): 9131-9138, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28837312

RESUMO

Stable chlorine isotope analysis is increasingly used to characterize sources, transformation pathways, and sinks of organic aliphatic compounds, many of them being priority pollutants in groundwater and the atmosphere. A wider use of chlorine isotopes in environmental studies is still inhibited by limitations of the different analytical techniques such as high sample needs, offline preparation, confinement to few compounds and mediocre precision, respectively. Here we present a method for the δ37Cl determination in volatile aliphatic compounds using gas chromatography coupled with multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS), which overcomes these limitations. The method was evaluated by using a suite of five previously offline characterized in-house standards and eight chlorinated methanes, ethanes, and ethenes. Other than in previous approaches using ICP methods for chlorine isotopes, isobaric interference of the 36ArH dimer with 37Cl was minimized by employing dry plasma conditions. Samples containing 2-3 nmol Cl injected on-column were sufficient to achieve a precision (σ) of 0.1 mUr (1 milliurey = 0.001 = 1‰) or better. Long-term reproducibility and accuracy was always better than 0.3 mUr if organics were analyzed in compound mixtures. Standardization is carried out by using a two-point calibration approach. Drift, even though very small in this study, is corrected by referencing versus an internal standard. The presented method offers a direct, universal, and compound-specific procedure to measure the δ37Cl of a wide array of organic compounds overcoming limitations of previous techniques with the benefits of high sensitivity and accuracy comparable to the best existing approaches.

14.
Rapid Commun Mass Spectrom ; 31(13): 1095-1102, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28374514

RESUMO

RATIONALE: The conventional high-temperature conversion (HTC) approach towards hydrogen compound-specific isotope analysis (CSIA) of halogen-bearing (F, Cl, Br, I) organics suffers from incomplete H2 yields and associated hydrogen isotope fractionation due to generation of HF, HCl, HBr, and HI byproducts. Moreover, the traditional off-line combustion of highly halogenated compounds results in incomplete recovery of water as an intermediary compound for hydrogen isotope ratio mass spectrometry (IRMS), and hence also leads to isotope fractionation. This study presents an optimized chromium-based high-temperature conversion (Cr/HTC) approach for hydrogen CSIA of various fluorinated, chlorinated, brominated and iodinated organic compounds. The Cr/HTC approach is fast, economical, and not affected by low H2 yields and associated isotope fractionation. METHODS: The performance of the modified gas chromatography/chromium-based high-temperature conversion (GC-Cr/HTC) system was monitored and optimized using an ion trap mass spectrometer. Quantitative conversion of organic hydrogen into H2 analyte gas was achieved for all halogen-bearing compounds. The corresponding accuracy of CSIA was validated using (i) manual dual-inlet (DI)-IRMS after off-line conversion into H2 , and (ii) elemental analyzer (EA)-Cr/HTC-IRMS (on-line conversion). RESULTS: The overall hydrogen isotope analysis of F-, Cl-, Br- and I-bearing organics via GC-Cr/HTC-IRMS achieved a precision σ ≤ 3 mUr and an accuracy within ±5 mUr along the VSMOW-SLAP scale compared with the measured isotope compositions resulting from both validation methods, off-line and on-line. The same analytical performance as for single-compound GC-Cr/HTC-IRMS was achieved compound-specifically for mixtures of halogenated organics following GC separation to baseline resolution. CONCLUSIONS: GC-Cr/HTC technology can be implemented in existing analytical equipment using commercially available materials to provide a versatile tool for hydrogen CSIA of halogenated and non-halogenated organics. Copyright © 2017 John Wiley & Sons, Ltd.

15.
Isotopes Environ Health Stud ; 53(2): 116-133, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27686404

RESUMO

In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18O/16O monitoring for future method development is proposed.


Assuntos
Monitoramento Ambiental/métodos , Temperatura Alta , Monitoramento Ambiental/instrumentação , Cromatografia Gasosa-Espectrometria de Massas , Éteres Metílicos/análise , Isótopos de Oxigênio/análise
16.
Rapid Commun Mass Spectrom ; 31(6): 475-484, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27984667

RESUMO

RATIONALE: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2 ) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. METHODS: The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. RESULTS: The modified EA-Cr/HTC reactor setup showed an overall H2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. CONCLUSIONS: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd.

17.
Anal Chem ; 88(8): 4294-302, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26974360

RESUMO

An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

18.
FEMS Microbiol Ecol ; 92(4): fiw054, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26960392

RESUMO

To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing. Several bacterial families, including Desulfobulbaceae, Desulfuromonadaceae and Pelobacteraceae and genera, includingDesulfobacterandGeobacter, known to reduce Fe were detected and showed highest abundance near the Fe(III)/Fe(II) redox boundary. Additional genera with microorganisms capable of coupling fermentation to Fe-reduction, includingClostridiumandBacillus, were observed. Also, the Fe-oxidizing families Mariprofundaceae and Gallionellaceae occurred at the SK and BB sites, respectively, supporting Fe-cycling. In contrast, the sulphate (SO4 (2-)) reducing bacteriaDesulfococcusandDesulfobacteriumwere more abundant at greater depths concurring with a decrease in Fe-reducing activity. The communities revealed by pyrosequencing, thus, match the redox stratification indicated by the geochemistry, with the known Fe-reducers coinciding with the zone of Fe-reduction. Not the intensely studied model organisms, such asGeobacterspp., but rather versatile microorganisms, including sulphate reducers and possibly unknown groups appear to be important for Fe-reduction in these marine suboxic sediments.


Assuntos
Bacillus/genética , Clostridium/genética , Deltaproteobacteria/genética , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Bacillus/metabolismo , Sequência de Bases , Clostridium/metabolismo , DNA Bacteriano/genética , Deltaproteobacteria/metabolismo , Mar do Norte , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo
19.
J Pharm Biomed Anal ; 115: 410-7, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26370616

RESUMO

Multidimensional isotope profiling is a useful tool for the characterization of the provenance of active pharmaceutical ingredients (API). To evaluate this approach, samples of the nonsteroidal anti-inflammatory drug (NSAIDs) ibuprofen were collected from 32 manufactures and 13 countries, and carbon, hydrogen and oxygen isotope ratios were analyzed by elemental analyzer, chromium-filled elemental analyzer and high temperature conversion elemental analyzer (EA, Cr-EA and TC/EA) coupled to an isotope ratio mass spectrometry (IRMS). The range of isotope values of ibuprofen (δ(13)C: -33.2±0.1‰ to -27.4±0.1‰; δ(2)H: -121.4±1.5‰ to -41.2±0.8‰; and δ(18)O: -12.6±0.3‰ to 19.0±0.6‰) allowed characterization and distinction of 5 groups, which reflect synthetic pathways and/or use of different raw materials, as well as possible isotope fractionation during the synthesis reactions. This study highlights that multi isotope fingerprinting has potential for identification of sources, and provides a database of isotope composition of ibuprofen (δ(2)H, δ(13)C, δ(18)O) that might improve the tracing of origin, transport pathways and environmental fate of ibuprofen.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Isótopos de Carbono/análise , Medicamentos Falsificados/análise , Hidrogênio/análise , Ibuprofeno/análise , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Anti-Inflamatórios não Esteroides/síntese química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Medicamentos Falsificados/síntese química , Ibuprofeno/síntese química , Espectrofotometria Ultravioleta
20.
Rapid Commun Mass Spectrom ; 29(9): 878-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377016

RESUMO

RATIONALE: High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H(2)) has been suspected as a possible cause of incomplete H(2) yield and hydrogen isotopic fractionation. METHODS: The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H(2) yields. The technique also was optimized to provide acceptable sample throughput. RESULTS: The classical HTC reaction of a number of selected compounds exhibited H(2) yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ(2)H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H(2) and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H(2) and the observed hydrogen isotopic result, reflecting isotopic fractionation. CONCLUSIONS: The classical HTC technique to produce H(2) from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H(2) being substantially shifted to more negative δ(2)H values. The reaction can be understood as an initial disproportionation leading to H(2) and HCN with the HCN-hydrogen systematically enriched in (2)H by more than 50 ‰. In the reaction of HCN with chromium, H(2) and chromium-containing solid residues are formed quantitatively.


Assuntos
Hidrogênio/química , Compostos de Nitrogênio/análise , Compostos de Nitrogênio/química , Temperatura Alta , Hidrogênio/análise , Cianeto de Hidrogênio/química , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA