Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Nat Commun ; 15(1): 7707, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300082

RESUMO

Mutations in parkin and PINK1 cause early-onset Parkinson's disease (EOPD). The ubiquitin ligase parkin is recruited to damaged mitochondria and activated by PINK1, a kinase that phosphorylates ubiquitin and the ubiquitin-like domain of parkin. Activated phospho-parkin then ubiquitinates mitochondrial proteins to target the damaged organelle for degradation. Here, we present the mechanism of activation of a new class of small molecule allosteric modulators that enhance parkin activity. The compounds act as molecular glues to enhance the ability of phospho-ubiquitin (pUb) to activate parkin. Ubiquitination assays and isothermal titration calorimetry with the most active compound (BIO-2007817) identify the mechanism of action. We present the crystal structure of a closely related compound (BIO-1975900) bound to a complex of parkin and two pUb molecules. The compound binds next to pUb on RING0 and contacts both proteins. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments confirm that activation occurs through release of the catalytic Rcat domain. In organello and mitophagy assays demonstrate that BIO-2007817 partially rescues the activity of parkin EOPD mutants, R42P and V56E, offering a basis for the design of activators as therapeutics for Parkinson's disease.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/química , Cristalografia por Raios X , Mutação , Fosforilação , Regulação Alostérica , Mitofagia/efeitos dos fármacos , Ubiquitina/metabolismo , Modelos Moleculares , Ligação Proteica , Células HEK293
2.
Commun Biol ; 7(1): 961, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117722

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Although most cases are sporadic and occur later in life, 10-15% of cases are genetic. Loss-of-function mutations in the ring-between-ring E3 ubiquitin ligase parkin, encoded by the PRKN gene, cause autosomal recessive forms of early onset PD. Together with the kinase PINK1, parkin forms a mitochondrial quality control pathway that tags damaged mitochondria for clearance. Under basal conditions, parkin is inhibited and compounds that increase its activity have been proposed as a therapy for PD. Recently, several naturally occurring hyperactive parkin variants were identified, which increased mitophagy in cultured cells. Here, we validate the hyperactivities of these variants in vitro and compare the levels of activity of the variants to those of the wild-type and the well-characterized hyperactive variant, W403A. We also study the effects of mutating the parkin ACT (activating element) on parkin activity in vitro. This work advances our understanding of the pathogenicity of parkin variants and is an important first step in the design of molecules to increase parkin activity.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mutação , Mitofagia/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Células HEK293
3.
RNA Biol ; 21(1): 7-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39016322

RESUMO

La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].


Assuntos
Poli A , Ligação Proteica , Ribonucleoproteínas , Antígeno SS-B , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Poli A/metabolismo , Poli A/química , Humanos , Modelos Moleculares , Sítios de Ligação , Autoantígenos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Cristalografia por Raios X , Domínios Proteicos , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , RNA Mensageiro/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
4.
Protein Sci ; 33(2): e4860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149326

RESUMO

Cystathionine- ß $$ \beta $$ -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg2+ ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg2+ transport.


Assuntos
Proteínas de Transporte de Cátions , Canais de Cátion TRPM , Humanos , Camundongos , Animais , Dimerização , Magnésio/química , Mutação , Proteínas de Membrana Transportadoras , Homeostase , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Proteínas de Transporte de Cátions/química
5.
Neuron ; 111(23): 3775-3788.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37716354

RESUMO

Parkin-mediated mitophagy has been studied extensively, but whether mutations in parkin contribute to Parkinson's disease pathogenesis through alternative mechanisms remains unexplored. Using patient-derived dopaminergic neurons, we found that phosphorylation of parkin by Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) at Ser9 leads to activation of parkin in a neuronal-activity-dependent manner. Activated parkin ubiquitinates synaptojanin-1, facilitating its interaction with endophilin A1 and synaptic vesicle recycling. Neurons from PD patients with mutant parkin displayed defective recycling of synaptic vesicles, leading to accumulation of toxic oxidized dopamine that was attenuated by boosting endophilin A1 expression. Notably, combined heterozygous parkin and homozygous PTEN-induced kinase 1 (PINK1) mutations led to earlier disease onset compared with homozygous mutant PINK1 alone, further underscoring a PINK1-independent role for parkin in contributing to disease. Thus, this study identifies a pathway for selective activation of parkin at human dopaminergic synapses and highlights the importance of this mechanism in the pathogenesis of Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Vesículas Sinápticas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Elife ; 122023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449820

RESUMO

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Canais de Cátion TRPM , Cátions Bivalentes , Canais de Cátion TRPM/genética , Ligação Proteica , Transporte Biológico
7.
FEBS J ; 290(23): 5475-5495, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37222397

RESUMO

Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-ß-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.


Assuntos
Neoplasias , Animais , Humanos , Ligação Proteica , Domínios Proteicos , Sequência de Aminoácidos , Neoplasias/metabolismo , Cistationina beta-Sintase/metabolismo , Cátions , Mamíferos/metabolismo
8.
J Mol Biol ; 435(12): 168090, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054910

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.


Assuntos
Mitocôndrias , Doença de Parkinson , Proteínas Quinases , Ubiquitina-Proteína Ligases , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
J Biol Chem ; 299(4): 103055, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822330

RESUMO

Phosphatases of regenerating liver (PRL or PTP4A) are a family of enigmatic protein phosphatases implicated in cell growth and metabolism. Despite their relevance in metastatic cancer, much remains unknown about the PRL family. They act as pseudophosphatases to regulate the CNNM family of magnesium transporters yet also have enzymatic activity on unknown substrates. In mammals, PRLs are mostly found trapped in an intermediate state that regulates their pseudophosphatase activity. Phosphocysteine, which is formed as an intermediate in the phosphatase catalytic cycle, is inefficiently hydrolyzed leading to burst enzyme kinetics and turnover numbers of less than one per hour. In flies, PRLs have recently been shown to have neuroprotective and neurodevelopmental roles raising the question whether they act as phosphatases, pseudophosphatases, or both. Here, we characterize the evolutionary development of PRLs and ask whether their unique structural and functional properties are conserved. We purified recombinant PRL proteins from 15 phylogenetically diverse organisms and characterized their catalytic activities and ability to bind CNNM proteins. We observed PRLs from humans to amoebae form a stable phosphocysteine intermediate and exhibit burst kinetics. Isothermal titration calorimetry experiments confirmed that the PRL-CNNM interaction is broadly conserved with nanomolar affinity in vertebrates. Lastly, we determined the crystal structure of the Drosophila melanogaster PRL-CNNM complex and identified mutants that specifically impair either phosphatase activity or CNNM binding. Our results reveal the unique properties of PRLs are conserved throughout the animal kingdom and open the door to using model organisms to dissect PRL function in cell signaling.


Assuntos
Drosophila melanogaster , Proteínas Tirosina Fosfatases , Animais , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Cinética , Drosophila melanogaster/metabolismo , Transdução de Sinais , Fígado/metabolismo , Mamíferos/metabolismo
11.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711628

RESUMO

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg 2+ ions on their own or uptake of divalent cations when coupled to the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP-binding protein and demonstrate that it binds the CNNM CBS-pair domain with low micromolar affinity. The crystal structure of the complex between ARL15 GTPase domain and CNNM2 CBS-pair domain reveals the molecular determinants of the interaction and allowed the identification of mutations in ARL15 and CNNM2 mutations that abrogate binding. Loss of CNNM binding prevented ARL15 suppression of TRPM7 channel activity in support of previous reports that the proteins function as a ternary complex. Binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) revealed that ARL15 and PRLs compete for binding CNNM, suggesting antagonistic regulation of divalent cation transport by the two proteins.

12.
Autophagy ; 19(2): 729-730, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35838500

RESUMO

Parkinson disease is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain. The majority of early onset forms of Parkinson disease are a result of autosomal mutations in PRKN (parkin RBR E3 ubiquitin protein ligase) and PINK1 (PTEN induced kinase 1), which together regulate the clearance of damaged mitochondria from cells through selective autophagy of mitochondria (mitophagy). In a pair of recent papers, we characterized a secondary mechanism of activation of PRKN by PINK1 that is responsible for approximately a quarter of mitophagy in a cellular model. Our deepening understanding of PRKN-PINK1 signaling affords hope for the development of small molecule therapeutics for the treatment of Parkinson disease.


Assuntos
Autofagia , Doença de Parkinson , Humanos , Proteínas Quinases/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/metabolismo
13.
Nucleic Acids Res ; 50(16): 9534-9547, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979957

RESUMO

La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.


Assuntos
Autoantígenos , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Poli A/metabolismo , RNA/genética , RNA/metabolismo , Ligação Proteica
14.
J Biol Chem ; 298(7): 102114, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690145

RESUMO

Parkin and PINK1 regulate a mitochondrial quality control system that is mutated in some early onset forms of Parkinson's disease. Parkin is an E3 ubiquitin ligase and regulated by the mitochondrial kinase PINK1 via a two-step cascade. PINK1 first phosphorylates ubiquitin, which binds a recruitment site on parkin to localize parkin to damaged mitochondria. In the second step, PINK1 phosphorylates parkin on its ubiquitin-like domain (Ubl), which binds a regulatory site to release ubiquitin ligase activity. Recently, an alternative feed-forward mechanism was identified that bypasses the need for parkin phosphorylation through the binding of a second phosphoubiquitin (pUb) molecule. Here, we report the structure of parkin activated through this feed-forward mechanism. The crystal structure of parkin with pUb bound to both the recruitment and regulatory sites reveals the molecular basis for differences in specificity and affinity of the two sites. We use isothermal titration calorimetry measurements to reveal cooperativity between the two binding sites and the role of linker residues for pUbl binding to the regulatory site. The observation of flexibility in the process of parkin activation offers hope for the future design of small molecules for the treatment of Parkinson's disease.


Assuntos
Proteínas Quinases , Ubiquitina-Proteína Ligases/química , Sítios de Ligação , Humanos , Doença de Parkinson/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
EMBO J ; 41(12): e109460, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35491809

RESUMO

PINK1 and parkin constitute a mitochondrial quality control system mutated in Parkinson's disease. PINK1, a kinase, phosphorylates ubiquitin to recruit parkin, an E3 ubiquitin ligase, to mitochondria. PINK1 controls both parkin localization and activity through phosphorylation of both ubiquitin and the ubiquitin-like (Ubl) domain of parkin. Here, we observed that phospho-ubiquitin can bind to two distinct sites on parkin, a high-affinity site on RING1 that controls parkin localization and a low-affinity site on RING0 that releases parkin autoinhibition. Surprisingly, ubiquitin vinyl sulfone assays, ITC, and NMR titrations showed that the RING0 site has higher affinity for phospho-ubiquitin than phosphorylated Ubl in trans. We observed parkin activation by micromolar concentrations of tetra-phospho-ubiquitin chains that mimic mitochondria bearing multiple phosphorylated ubiquitins. A chimeric form of parkin with the Ubl domain replaced by ubiquitin was readily activated by PINK1 phosphorylation. In all cases, mutation of the binding site on RING0 abolished parkin activation. The feedforward mechanism of parkin activation confers robustness and rapidity to the PINK1-parkin pathway and likely represents an intermediate step in its evolutionary development.


Assuntos
Proteínas Quinases , Ubiquitina-Proteína Ligases , Fosforilação/genética , Domínios Proteicos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217622

RESUMO

The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation in mitosis by preventing the onset of anaphase until correct bipolar attachment of sister chromosomes to the mitotic spindle is attained. It acts by promoting the assembly of a mitotic checkpoint complex (MCC), composed of mitotic checkpoint proteins BubR1, Bub3, Mad2, and Cdc20. MCC binds to and inhibits the action of ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), which targets for degradation regulators of anaphase initiation. When the checkpoint system is satisfied, MCCs are disassembled, allowing the recovery of APC/C activity and initiation of anaphase. Many of the pathways of the disassembly of the different MCCs have been elucidated, but the mode of their regulation remained unknown. We find that UBR5 (ubiquitin-protein ligase N-recognin 5) is associated with the APC/C*MCC complex immunopurified from extracts of nocodazole-arrested HeLa cells. UBR5 binds to mitotic checkpoint proteins BubR1, Bub3, and Cdc20 and promotes their polyubiquitylation in vitro. The dissociation of a Bub3*BubR1 subcomplex of MCC is stimulated by UBR5-dependent ubiquitylation, as suggested by observations that this process in mitotic extracts requires UBR5 and α-ß bond hydrolysis of adenosine triphosphate. Furthermore, a system reconstituted from purified recombinant components carries out UBR5- and ubiquitylation-dependent dissociation of Bub3*BubR1. Immunodepletion of UBR5 from mitotic extracts slows down the release of MCC components from APC/C and prolongs the lag period in the recovery of APC/C activity in the exit from mitotic checkpoint arrest. We suggest that UBR5 may be involved in the regulation of the inactivation of the mitotic checkpoint.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Ubiquitinação
17.
Open Biol ; 12(1): 210255, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042405

RESUMO

Mutations in Parkin and PINK1 cause early-onset familial Parkinson's disease. Parkin is a RING-In-Between-RING E3 ligase that transfers ubiquitin from an E2 enzyme to a substrate in two steps: (i) thioester intermediate formation on Parkin and (ii) acyl transfer to a substrate lysine. The process is triggered by PINK1, which phosphorylates ubiquitin on damaged mitochondria, which in turn recruits and activates Parkin. This leads to the ubiquitination of outer mitochondrial membrane proteins and clearance of the organelle. While the targets of Parkin on mitochondria are known, the factors determining substrate selectivity remain unclear. To investigate this, we examined how Parkin catalyses ubiquitin transfer to substrates. We found that His433 in the RING2 domain contributes to the catalysis of acyl transfer. In cells, the mutation of His433 impairs mitophagy. In vitro ubiquitination assays with isolated mitochondria show that Mfn2 is a kinetically preferred substrate. Using proximity-ligation assays, we show that Mfn2 specifically co-localizes with PINK1 and phospho-ubiquitin (pUb) in U2OS cells upon mitochondrial depolarization. We propose a model whereby ubiquitination of Mfn2 is efficient by virtue of its localization near PINK1, which leads to the recruitment and activation of Parkin via pUb at these sites.


Assuntos
Proteínas Quinases , Ubiquitina-Proteína Ligases , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
J Biol Chem ; 298(1): 101471, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890645

RESUMO

Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate-enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.


Assuntos
Fígado , Proteínas Tirosina Fosfatases , Animais , Catálise , Humanos , Fígado/enzimologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Tirosina Fosfatases/metabolismo
19.
Nat Commun ; 12(1): 4028, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188059

RESUMO

CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hydrogenophilaceae/metabolismo , Magnésio/metabolismo , Methanomicrobiaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Medição da Troca de Deutério , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA