Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0224235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648229

RESUMO

Mediterranean wetlands are critical strongholds for biodiversity and the provision of ecosystem functions and services; yet, they are being severely degraded by a number of socio-economic drivers and pressures, including climate change. Moreover, we still lack comprehensive understanding of the extent to which biodiversity loss in Mediterranean wetlands will accelerate change in ecosystem processes. Here, we evaluate how changes in biodiversity can alter the ecosystem of the Camargue (southern France). We collected data on species presence/absence, trends and abundance over a 40-year period by combining observations from the scholarly literature with insights derived from expert knowledge. In total, we gathered more than 1500 estimates of presence/absence, over 1400 estimates of species abundance, and about 1400 estimates of species trends for eight taxonomic groups, i.e. amphibians, reptiles, breeding birds, fish, mammals, dragonflies (odonates), orthopterans and vascular plants. Furthermore, we used information on recently arrived species and invasive species to identify compositional changes across multiple taxa. Complementing targeted literature searches with expert knowledge allowed filling important gaps regarding the status and trends of biodiversity in the Camargue. Species trend data revealed sharp population declines in amphibians, odonates and orthopterans, while birds and plants experienced an average increase in abundance between the 1970s and the 2010s. The general increasing trends of novel and invasive species is suggested as an explanation for the changing abundance of birds and plants. While the observed declines in certain taxa reflect the relative failure of the protection measures established in the Camargue, the increasing exposure to novel and invasive species reveal major changes in the community structure of the different taxonomic groups. This study is the first attempt to assess changes in biodiversity in the Camargue using an expert knowledge approach, and can help manage the uncertainties and complexities associated with rapid social-ecological change in other Mediterranean wetlands.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Dinâmica Populacional , Animais , França , Mamíferos , Plantas , Áreas Alagadas
2.
Sci Total Environ ; 613-614: 1376-1384, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898505

RESUMO

Global change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems. This facilitates the generation of linked comprehensive ecosystem monitoring data, supports synergies in the use of costly infrastructures, fosters cross-initiative research and provides a template for collaboration beyond the ILTER and GEO BON communities.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental/métodos , Política Ambiental , Tomada de Decisões , Monitoramento Ambiental/estatística & dados numéricos
3.
Biol Rev Camb Philos Soc ; 93(1): 55-71, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28447398

RESUMO

Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long-lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitorização de Parâmetros Ecológicos/métodos , Monitoramento Ambiental/métodos , Animais , Cooperação Internacional
4.
Ecology ; 97(6): 1625, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27859220

RESUMO

Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6-20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale.


Assuntos
Agricultura/métodos , Biodiversidade , Fazendas , África , Animais , Abelhas , Produtos Agrícolas , Ecossistema , Monitoramento Ambiental , Europa (Continente)
5.
Glob Chang Biol ; 22(7): 2505-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26950650

RESUMO

Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.


Assuntos
Biodiversidade , Mudança Climática , Previsões , Ecossistema , Modelos Teóricos
6.
Nat Commun ; 5: 4151, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24958283

RESUMO

Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity.


Assuntos
Abelhas/crescimento & desenvolvimento , Biodiversidade , Oligoquetos/crescimento & desenvolvimento , Agricultura Orgânica , Animais , Abelhas/classificação , Meio Ambiente , Oligoquetos/classificação , Plantas/classificação , Aranhas/classificação , Aranhas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA