Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 597745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519736

RESUMO

Fertilization management can affect plant performance and soil microbiota, involving still poorly understood rhizosphere interactions. We hypothesized that fertilization practice exerts specific effects on rhizodeposition with consequences for recruitment of rhizosphere microbiota and plant performance. To address this hypothesis, we conducted a minirhizotron experiment using lettuce as model plant and field soils with contrasting properties from two long-term field experiments (HUB-LTE: loamy sand, DOK-LTE: silty loam) with organic and mineral fertilization history. Increased relative abundance of plant-beneficial arbuscular mycorrhizal fungi and fungal pathotrophs were characteristic of the rhizospheres in the organically managed soils (HU-org; BIODYN2). Accordingly, defense-related genes were systemically expressed in shoot tissues of the respective plants. As a site-specific effect, high relative occurrence of the fungal lettuce pathogen Olpidium sp. (76-90%) was recorded in the rhizosphere, both under long-term organic and mineral fertilization at the DOK-LTE site, likely supporting Olpidium infection due to a lower water drainage potential compared to the sandy HUB-LTE soils. However, plant growth depressions and Olpidium infection were exclusively recorded in the BIODYN2 soil with organic fertilization history. This was associated with a drastic (87-97%) reduction in rhizosphere abundance of potentially plant-beneficial microbiota (Pseudomonadaceae, Mortierella elongata) and reduced concentrations of the antifungal root exudate benzoate, known to be increased in presence of Pseudomonas spp. In contrast, high relative abundance of Pseudomonadaceae (Gammaproteobacteria) in the rhizosphere of plants grown in soils with long-term mineral fertilization (61-74%) coincided with high rhizosphere concentrations of chemotactic dicarboxylates (succinate, malate) and a high C (sugar)/N (amino acid) ratio, known to support the growth of Gammaproteobacteria. This was related with generally lower systemic expression of plant defense genes as compared with organic fertilization history. Our results suggest a complex network of belowground interactions among root exudates, site-specific factors and rhizosphere microbiota, modulating the impact of fertilization management with consequences for plant health and performance.

2.
Microorganisms ; 7(2)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699936

RESUMO

Phosphate-(P)-solubilizing microorganisms (PSM) are important drivers of P cycling in natural and agro-ecosystems. Their use as plant inoculants to improve P acquisition of crops has been investigated for decades. However, limited reproducibility of the expected effects, particularly under field conditions, remains a major challenge. This study demonstrates that the form of nitrogen fertilization has a significant impact on the performance of various fungal and bacterial PSM inoculants in maize grown on neutral to alkaline soils with limited P availability. Under these conditions, a high soil pH-buffering capacity frequently limits the efficiency of nutrient mobilization, mediated by plant roots and microorganisms via rhizosphere acidification. In a soil pH range between 7.0 and 8.0, nitrate fertilization promoting rhizosphere alkalinisation further aggravates this problem. Accordingly, in greenhouse experiments, six strains of Pseudomonas, Bacillus, Paenibacillus, Streptomyces, and Penicillium with proven P-solubilizing potential, completely failed to promote P acquisition in maize grown on a calcareous Loess sub-soil pH 7.6 with nitrate fertilization and rock phosphate (Rock-P) as a sparingly soluble P source. However, after replacement of nitrate fertilization by ammonium, stabilized with the nitrification inhibitor 3,4-dimethylpyrazole-phosphate (DMPP), five out of seven investigated PSM inoculants (comprising 12 fungal and bacterial PSM strains) exerted beneficial effects on plant growth and reached up to 88% of the shoot biomass production of a control supplied with soluble triple-superphosphate (TSP). Stabilized ammonium combined with PSM-inoculants improved P acquisition (Trichoderma harzianum T22, Pseudomonas sp. DMSZ 13134), while other strains particularly stimulated root growth (T. harzianum OMG16, Bacillus amyloliquefaciens FZB42), which promoted the acquisition also of other mineral nutrients, such as N, K, and Mn. A similar effect was recorded under field conditions on an alkaline clay-loam soil pH 8.6. The combination of stabilized ammonium with a range of consortium products based on T. harzianum OMG16, B. amyloliquefaciens, micronutrients, and humic acids completely compensated the effect of a TSP fertilization on field establishment, nutrient acquisition, and yield formation in maize, while non-stabilized urea-di-ammonium phosphate fertilization was largely ineffective. These findings suggest that the efficiency of PSM-plant interactions can be influenced by the form of N fertilization, offering promising perspectives for synergistic effects with stabilized ammonium fertilizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA