Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biol Psychiatry ; 94(2): 153-163, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581494

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold. METHODS: To dissect the contribution of induced excitatory neurons (iENs) versus GABAergic (gamma-aminobutyric acidergic) neurons (iGNs) to SCZ pathophysiology, we induced iNs from CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 isogenic and SCZ patient-derived induced pluripotent stem cells and analyzed SCZ-related phenotypes in iEN monocultures and iEN/iGN cocultures. RESULTS: In iEN/iGN cocultures, neuronal firing and synchrony were reduced at later, but not earlier, stages of in vitro development. These were fully recapitulated in iEN monocultures, indicating a primary role for iENs. Moreover, isogenic iENs showed reduced dendrite length and deficits in calcium handling. iENs from 16p11.2 duplication-carrying patients with SCZ displayed overlapping deficits in network synchrony, dendrite outgrowth, and calcium handling. Transcriptomic analysis of both iEN cohorts revealed molecular markers of disease related to the glutamatergic synapse, neuroarchitecture, and calcium regulation. CONCLUSIONS: Our results indicate the presence of 16p11.2 duplication-dependent alterations in SCZ patient-derived iENs. Transcriptomics and cellular phenotyping reveal overlap between isogenic and patient-derived iENs, suggesting a central role of glutamatergic, morphological, and calcium dysregulation in 16p11.2 duplication-mediated pathogenesis. Moreover, excitatory dysfunction during early neurodevelopment is implicated as the basis of SCZ pathogenesis in 16p11.2 duplication carriers. Our results support network synchrony and calcium handling as outcomes directly linked to this genetic risk variant.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/patologia , Cálcio , Neurônios/patologia
2.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931052

RESUMO

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Variações do Número de Cópias de DNA , Humanos , Neurônios , Esquizofrenia/metabolismo , Sinapses/metabolismo
3.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099189

RESUMO

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior , Transtornos Psicóticos , Esquizofrenia/genética , Caracteres Sexuais , Transtorno Depressivo Maior/genética , Células Endoteliais , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Receptores de Fatores de Crescimento do Endotélio Vascular , Sulfurtransferases
4.
J Psychiatr Res ; 137: 215-224, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33691233

RESUMO

While 17% of US adults use tobacco regularly, smoking rates among persons with schizophrenia are upwards of 60%. Research supports a shared etiological basis for smoking and schizophrenia, including findings from genome-wide association studies (GWAS). However, few studies have directly tested whether the same or distinct genetic variants also influence smoking behavior among schizophrenia cases. Using data from the Psychiatric Genomics Consortium (PGC) study of schizophrenia (35476 cases, 46839 controls), we estimated genetic correlations between these traits and tested whether polygenic risk scores (PRS) constructed from the results of smoking behaviors GWAS were associated with schizophrenia risk or smoking behaviors among schizophrenia cases. Results indicated significant genetic correlations of schizophrenia with smoking initiation (rg = 0.159; P = 5.05 × 10-10), cigarettes-smoked-per-day (rg = 0.094; P = 0.006), and age-of-onset of smoking (rg = 0.10; P = 0.009). Comparing smoking behaviors among schizophrenia cases to the general population, we observe positive genetic correlations for smoking initiation (rg = 0.624, P = 0.002) and cigarettes-smoked-per-day (rg = 0.689, P = 0.120). Similarly, TAG-based PRS for smoking initiation and cigarettes-smoked-per-day were significantly associated with smoking initiation (P = 3.49 × 10-5) and cigarettes-smoked-per-day (P = 0.007) among schizophrenia cases. We performed the first GWAS of smoking behavior among schizophrenia cases and identified a novel association with cigarettes-smoked-per-day upstream of the TMEM106B gene on chromosome 7p21.3 (rs148253479, P = 3.18 × 10-8, n = 3520). Results provide evidence of a partially shared genetic basis for schizophrenia and smoking behaviors. Additionally, genetic risk factors for smoking behaviors were largely shared across schizophrenia and non-schizophrenia populations. Future research should address mechanisms underlying these associations to aid both schizophrenia and smoking treatment and prevention efforts.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Adulto , Predisposição Genética para Doença/genética , Genômica , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Fumar/genética
5.
Science ; 369(6503): 561-565, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732423

RESUMO

Most neuropsychiatric disease risk variants are in noncoding sequences and lack functional interpretation. Because regulatory sequences often reside in open chromatin, we reasoned that neuropsychiatric disease risk variants may affect chromatin accessibility during neurodevelopment. Using human induced pluripotent stem cell (iPSC)-derived neurons that model developing brains, we identified thousands of genetic variants exhibiting allele-specific open chromatin (ASoC). These neuronal ASoCs were partially driven by altered transcription factor binding, overrepresented in brain gene enhancers and expression quantitative trait loci, and frequently associated with distal genes through chromatin contacts. ASoCs were enriched for genetic variants associated with brain disorders, enabling identification of functional schizophrenia risk variants and their cis-target genes. This study highlights ASoC as a functional mechanism of noncoding neuropsychiatric risk variants, providing a powerful framework for identifying disease causal variants and genes.


Assuntos
Alelos , Encéfalo/metabolismo , Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Esquizofrenia/genética , Elementos Facilitadores Genéticos , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Risco
6.
Mol Neuropsychiatry ; 5(Suppl 1): 85-96, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32399472

RESUMO

Microglia are the primary innate immune cell type in the brain that have been implicated in the pathogenesis of several neurodegenerative and neuropsychiatric disorders, most notably Alzheimer's disease (AD) and schizophrenia. Microglia generated from human induced pluripotent stem cells (hiPSCs) represent a promising in vitro cellular model for studying the neuroimmune interactions involved in these disorders. Among several methods of generating -hiPSC-derived microglia (iMG) - varying in duration and resultant purity - a recent protocol by Brownjohn et al. [Stem Cell Reports. 2018 Apr;10(4):1294-307] is particularly simple and efficient. However, the replicability of this method, transcriptomic similarity of these iMG to primary adult microglia, and their genetic relevance to disease (i.e., enrichment of disease risk loci in genes preferentially expressed in these cells) remains unclear. Using two hiPSC lines, we demonstrated that Brownjohn's protocol can rapidly generate iMG that morphologically and functionally resembled microglia. The iMG cells we generated were found to be transcriptionally similar to previously reported iMG, as well as fetal and adult microglia. Furthermore, by using cell type-specific gene expression to partition disease heritability, we showed that iMG cells are genetically relevant to AD but found no significant enrichments of risk loci of Parkinson's disease, schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, or body mass index. Across a range of neuronal and immune cell types, we found only iMG, primary microglia, and microglia-like cell types exhibited a significant enrichment for AD heritability. Our results thus support the use of iMG as a human cellular model for understanding AD biology and underlying genetic factors, as well as for developing and efficiently screening new therapeutics.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31555746

RESUMO

Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.

8.
Biol Psychiatry ; 85(12): 1065-1073, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31003785

RESUMO

BACKGROUND: Major depressive disorder (MDD) is moderately heritable, with a high prevalence and a presumed high heterogeneity. Copy number variants (CNVs) could contribute to the heritable component of risk, but the two previous genome-wide association studies of rare CNVs did not report significant findings. METHODS: In this meta-analysis of four cohorts (5780 patients and 6626 control subjects), we analyzed the association of MDD to 1) genome-wide burden of rare deletions and duplications, partitioned by length (<100 kb or >100 kb) and other characteristics, and 2) individual rare exonic CNVs and CNV regions. RESULTS: Patients with MDD carried significantly more short deletions than control subjects (p = .0059) but not long deletions or short or long duplications. The confidence interval for long deletions overlapped with that for short deletions, but long deletions were 70% less frequent genome-wide, reducing the power to detect increased burden. The increased burden of short deletions was primarily in intergenic regions. Short deletions in cases were also modestly enriched for high-confidence enhancer regions. No individual CNV achieved thresholds for suggestive or significant association after genome-wide correction. p values < .01 were observed for 15q11.2 duplications (TUBGCP5, CYFIP1, NIPA1, and NIPA2), deletions in or near PRKN or MSR1, and exonic duplications of ATG5. CONCLUSIONS: The increased burden of short deletions in patients with MDD suggests that rare CNVs increase the risk of MDD by disrupting regulatory regions. Results for longer deletions were less clear, but no large effects were observed for long multigenic CNVs (as seen in schizophrenia and autism). Further studies with larger sample sizes are warranted.


Assuntos
Transtorno Depressivo Maior/genética , Deleção de Sequência , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
9.
Transl Psychiatry ; 8(1): 278, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546022

RESUMO

The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 µM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = -10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10-141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10-6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies.


Assuntos
Dopamina/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Dopamina/administração & dosagem , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/metabolismo , Análise de Sequência de RNA , Transcriptoma , Adulto Jovem
10.
Transl Psychiatry ; 8(1): 158, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115913

RESUMO

The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders.


Assuntos
Apoptose/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Esquizofrenia/genética , Esquizofrenia/imunologia , Transcriptoma , Encéfalo/imunologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Análise de Sequência de RNA
11.
F1000Res ; 7: 462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862020

RESUMO

While ClinVar has become an indispensable resource for clinical variant interpretation, its sophisticated structure provides it with a daunting learning curve. Often the sheer depth of types of information provided can make it difficult to analyze variant information with high throughput. Clinotator is a fast and lightweight tool to extract important aspects of criteria-based clinical assertions; it uses that information to generate several metrics to assess the strength and consistency of the evidence supporting the variant clinical significance. Clinical assertions are weighted by significance type, age of submission and submitter expertise category to filter outdated or incomplete assertions that otherwise confound interpretation. This can be accomplished in batches: either lists of Variation IDs or dbSNP rsIDs, or with vcf files that are additionally annotated. Using sample sets ranging from 15,000-50,000 variants, we slice out problem variants in minutes without extensive computational effort (using only a personal computer) and corroborate recently reported trends of discordance hiding amongst the curated masses. With the rapidly growing body of variant evidence, most submitters and researchers have limited resources to devote to variant curation. Clinotator provides efficient, systematic prioritization of discordant variants in need of reclassification. The hope is that this tool can inform ClinVar curation and encourage submitters to keep their clinical assertions current by focusing their efforts. Additionally, researchers can utilize new metrics to analyze variants of interest in pursuit of new insights into pathogenicity.

12.
Stem Cell Res ; 29: 88-98, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631039

RESUMO

Chromatin accessibility to transcription factors (TFs) strongly influences gene transcription and cell differentiation. However, a mechanistic understanding of the transcriptional control during the neuronal differentiation of human induced pluripotent stem cells (hiPSCs), a promising cellular model for mental disorders, remains elusive. Here, we carried out additional analyses on our recently published open chromatin regions (OCRs) profiling at different stages of hiPSC neuronal differentiation. We found that the dynamic changes of OCR during neuronal differentiation highlighted cell stage-specific gene networks, and the chromatin accessibility at the core promoter region of a gene correlates with the corresponding transcript abundance. Within the cell stage-specific OCRs, we identified the binding of cell stage-specific TFs and observed a lag of a neuronal TF binding behind the mRNA expression of the corresponding TF. Interestingly, binding footprints of NEUROD1 and NEUROG2, both of which induce high efficient conversion of hiPSCs to glutamatergic neurons, were among those most enriched in the relatively mature neurons. Furthermore, TF network analysis showed that both NEUROD1 and NEUROG2 were present in the same core TF network specific to more mature neurons, suggesting a pivotal mechanism of epigenetic control of neuronal differentiation and maturation. Our study provides novel insights into the epigenetic control of glutamatergic neurogenesis in the context of TF networks, which may be instrumental to improving hiPSC modeling of neuropsychiatric disorders.


Assuntos
Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/genética , Diferenciação Celular , Humanos
13.
Sci Rep ; 7(1): 16950, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29217827

RESUMO

Family and twin studies suggest that genes play a role in male sexual orientation. We conducted a genome-wide association study (GWAS) of male sexual orientation on a primarily European ancestry sample of 1,077 homosexual men and 1,231 heterosexual men using Affymetrix single nucleotide polymorphism (SNP) arrays. We identified several SNPs with p < 10-5, including regions of multiple supporting SNPs on chromosomes 13 (minimum p = 7.5 × 10-7) and 14 (p = 4.7 × 10-7). The genes nearest to these peaks have functions plausibly relevant to the development of sexual orientation. On chromosome 13, SLITRK6 is a neurodevelopmental gene mostly expressed in the diencephalon, which contains a region previously reported as differing in size in men by sexual orientation. On chromosome 14, TSHR genetic variants in intron 1 could conceivably help explain past findings relating familial atypical thyroid function and male homosexuality. Furthermore, skewed X chromosome inactivation has been found in the thyroid condition, Graves' disease, as well as in mothers of homosexual men. On pericentromeric chromosome 8 within our previously reported linkage peak, we found support (p = 4.1 × 10-3) for a SNP association previously reported (rs77013977, p = 7.1 × 10-8), with the combined analysis yielding p = 6.7 × 10-9, i.e., a genome-wide significant association.


Assuntos
Homossexualidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 14/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Receptores da Tireotropina/genética , Inativação do Cromossomo X
14.
Cell Stem Cell ; 21(3): 305-318.e8, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28803920

RESUMO

Most disease variants lie within noncoding genomic regions, making their functional interpretation challenging. Because chromatin openness strongly influences transcriptional activity, we hypothesized that cell-type-specific open chromatin regions (OCRs) might highlight disease-relevant noncoding sequences. To investigate, we mapped global OCRs in neurons differentiating from hiPSCs, a cellular model for studying neurodevelopmental disorders such as schizophrenia (SZ). We found that the OCRs are highly dynamic and can stratify GWAS-implicated SZ risk variants. Of the more than 3,500 SZ-associated variants analyzed, we prioritized ∼100 putatively functional ones located in neuronal OCRs, including rs1198588, at a leading risk locus flanking MIR137. Excitatory neurons derived from hiPSCs with CRISPR/Cas9-edited rs1198588 or a rare proximally located SZ risk variant showed altered MIR137 expression, dendrite arborization, and synapse maturation. Our study shows that noncoding disease variants in OCRs can affect neurodevelopment, and that analysis of open chromatin regions can help prioritize functionally relevant noncoding variants identified by GWAS.


Assuntos
Cromatina/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/citologia , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Esquizofrenia/genética , Sequência de Bases , Diferenciação Celular/genética , Pegada de DNA , Dendritos/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Risco , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
15.
PLoS Genet ; 12(5): e1005993, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153221

RESUMO

Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.


Assuntos
Síndrome de Angelman/genética , Transtorno do Espectro Autista/genética , Herança Paterna/genética , Síndrome de Prader-Willi/genética , Esquizofrenia/genética , Síndrome de Angelman/patologia , Transtorno do Espectro Autista/patologia , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Feminino , Impressão Genômica/genética , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Síndrome de Prader-Willi/patologia , Esquizofrenia/patologia
16.
Am J Med Genet B Neuropsychiatr Genet ; 171B(2): 276-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663532

RESUMO

Genome-wide association studies (GWAS) of schizophrenia have yielded more than 100 common susceptibility variants, and strongly support a substantial polygenic contribution of a large number of small allelic effects. It has been hypothesized that familial schizophrenia is largely a consequence of inherited rather than environmental factors. We investigated the extent to which familiality of schizophrenia is associated with enrichment for common risk variants detectable in a large GWAS. We analyzed single nucleotide polymorphism (SNP) data for cases reporting a family history of psychotic illness (N = 978), cases reporting no such family history (N = 4,503), and unscreened controls (N = 8,285) from the Psychiatric Genomics Consortium (PGC1) study of schizophrenia. We used a multinomial logistic regression approach with model-fitting to detect allelic effects specific to either family history subgroup. We also considered a polygenic model, in which we tested whether family history positive subjects carried more schizophrenia risk alleles than family history negative subjects, on average. Several individual SNPs attained suggestive but not genome-wide significant association with either family history subgroup. Comparison of genome-wide polygenic risk scores based on GWAS summary statistics indicated a significant enrichment for SNP effects among family history positive compared to family history negative cases (Nagelkerke's R(2 ) = 0.0021; P = 0.00331; P-value threshold <0.4). Estimates of variability in disease liability attributable to the aggregate effect of genome-wide SNPs were significantly greater for family history positive compared to family history negative cases (0.32 and 0.22, respectively; P = 0.031). We found suggestive evidence of allelic effects detectable in large GWAS of schizophrenia that might be specific to particular family history subgroups. However, consideration of a polygenic risk score indicated a significant enrichment among family history positive cases for common allelic effects. Familial illness might, therefore, represent a more heritable form of schizophrenia, as suggested by previous epidemiological studies.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Família , Humanos , Padrões de Herança/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
17.
Int J Epidemiol ; 44(5): 1706-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286434

RESUMO

BACKGROUND: A long-standing epidemiological puzzle is the reduced rate of rheumatoid arthritis (RA) in those with schizophrenia (SZ) and vice versa. Traditional epidemiological approaches to determine if this negative association is underpinned by genetic factors would test for reduced rates of one disorder in relatives of the other, but sufficiently powered data sets are difficult to achieve. The genomics era presents an alternative paradigm for investigating the genetic relationship between two uncommon disorders. METHODS: We use genome-wide common single nucleotide polymorphism (SNP) data from independently collected SZ and RA case-control cohorts to estimate the SNP correlation between the disorders. We test a genotype X environment (GxE) hypothesis for SZ with environment defined as winter- vs summer-born. RESULTS: We estimate a small but significant negative SNP-genetic correlation between SZ and RA (-0.046, s.e. 0.026, P = 0.036). The negative correlation was stronger for the SNP set attributed to coding or regulatory regions (-0.174, s.e. 0.071, P = 0.0075). Our analyses led us to hypothesize a gene-environment interaction for SZ in the form of immune challenge. We used month of birth as a proxy for environmental immune challenge and estimated the genetic correlation between winter-born and non-winter born SZ to be significantly less than 1 for coding/regulatory region SNPs (0.56, s.e. 0.14, P = 0.00090). CONCLUSIONS: Our results are consistent with epidemiological observations of a negative relationship between SZ and RA reflecting, at least in part, genetic factors. Results of the month of birth analysis are consistent with pleiotropic effects of genetic variants dependent on environmental context.


Assuntos
Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adolescente , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Hum Mol Genet ; 24(16): 4674-85, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26022996

RESUMO

We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Variação Genética , Esquizofrenia , Transcriptoma , Feminino , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia/metabolismo
19.
Am J Hum Genet ; 95(6): 744-53, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434007

RESUMO

Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10(-4)). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression.


Assuntos
Transtorno Bipolar/genética , Regulação da Expressão Gênica/genética , Variação Genética , MicroRNAs/genética , Esquizofrenia/genética , Alelos , Sequência de Bases , Linhagem Celular Tumoral , Frequência do Gene , Genes Reporter , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Risco , Análise de Sequência de DNA
20.
Nat Commun ; 5: 4858, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25224588

RESUMO

Dendritic spine pathology is a key feature of several neuropsychiatric disorders. The Rac1 guanine nucleotide exchange factor kalirin-7 is critical for spine morphogenesis on cortical pyramidal neurons. Here we identify a rare coding variant in the KALRN gene region that encodes the catalytic domain, in a schizophrenia patient and his sibling with major depressive disorder. The D1338N substitution significantly diminished the protein's ability to catalyse the activation of Rac1. Contrary to wild-type kalirin-7, kalirin-7-D1338N failed to increase spine size and density. Both subjects carrying the polymorphism displayed reduced cortical volume in the superior temporal sulcus (STS), a region implicated in schizophrenia. Consistent with this, mice with reduced kalirin expression showed reduced neuropil volume in the rodent homologue of the STS. These data suggest that single amino acid changes in proteins involved in dendritic spine function can have significant effects on the structure and function of the cerebral cortex.


Assuntos
Substituição de Aminoácidos , Córtex Cerebral/patologia , Transtorno Depressivo Maior/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Serina-Treonina Quinases/genética , Esquizofrenia/genética , Proteínas rac1 de Ligação ao GTP/genética , Adulto , Animais , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Neurópilo/metabolismo , Neurópilo/patologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise de Sequência de DNA , Irmãos , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA