Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837566

RESUMO

Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.


Assuntos
Quirópteros , Mudança Climática , DNA Mitocondrial , Animais , Quirópteros/fisiologia , Quirópteros/genética , África Austral , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Filogenia , Especiação Genética , Filogeografia , Distribuição Animal
2.
Proc Biol Sci ; 291(2018): 20232823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444339

RESUMO

Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.


Assuntos
Quirópteros , Humanos , Animais , Gado
3.
Sci Rep ; 13(1): 15829, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739999

RESUMO

Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.


Assuntos
Líquidos Corporais , COVID-19 , Quirópteros , Animais , Animais Selvagens
4.
Viruses ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851712

RESUMO

In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.


Assuntos
Quirópteros , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Animais , Humanos , África do Sul/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , África Austral , Aminoácidos
5.
Viruses ; 15(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36680139

RESUMO

Mammarenaviruses are hosted by several rodent species, a small number of which have been known to be zoonotic. Host surveillance among small mammals has identified a large diversity of previously undescribed mammarenaviruses. Intensified biosurveillance is warranted to better understand the diversity of these agents. Longitudinal host surveillance involving non-volant small mammals at a site in the Limpopo province, South Africa, was conducted. The study reports on the screening results of 563 samples for the presence of mammarenavirus RNA. PCR-positive samples were subjected to sequencing using Miseq amplicon sequencing. Sequences with close similarity to Mariental and Lunk viruses were identified from two rodent species, Micaelamys namaquensis and Mus minutoides. This represents the first description of these viruses from South Africa. The genomic sequences reported here partially satisfied the requirements put forward by the International Committee on the Taxonomy of Viruses' criteria for species delineation, suggesting that these may be new strains of existing species. The known distribution of these mammarenaviruses is thus expanded further south in Africa.


Assuntos
Arenaviridae , Animais , Arenaviridae/genética , Filogenia , África Austral , Mamíferos , Murinae
6.
Sci Rep ; 11(1): 24262, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930962

RESUMO

Bat-borne viruses in the Henipavirus genus have been associated with zoonotic diseases of high morbidity and mortality in Asia and Australia. In Africa, the Egyptian rousette bat species (Rousettus aegyptiacus) is an important viral host in which Henipavirus-related viral sequences have previously been identified. We expanded these findings by assessing the viral dynamics in a southern African bat population. A longitudinal study of henipavirus diversity and excretion dynamics identified 18 putative viral species circulating in a local population, three with differing seasonal dynamics, and the winter and spring periods posing a higher risk of virus spillover and transmission. The annual peaks in virus excretion are most likely driven by subadults and may be linked to the waning of maternal immunity and recolonization of the roost in early spring. These results provide insightful information into the bat-host relationship that can be extrapolated to other populations across Africa and be communicated to at-risk communities as a part of evidence-based public health education and prevention measures against pathogen spillover threats.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Marburgvirus/imunologia , Paramyxoviridae/imunologia , Estações do Ano , África , Animais , Ásia , Austrália , Geografia , Henipavirus , Humanos , Estudos Longitudinais , África do Sul , Fatores de Tempo , Zoonoses/epidemiologia , Zoonoses/virologia
7.
Viruses ; 13(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070175

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has had devastating health and socio-economic impacts. Human activities, especially at the wildlife interphase, are at the core of forces driving the emergence of new viral agents. Global surveillance activities have identified bats as the natural hosts of diverse coronaviruses, with other domestic and wildlife animal species possibly acting as intermediate or spillover hosts. The African continent is confronted by several factors that challenge prevention and response to novel disease emergences, such as high species diversity, inadequate health systems, and drastic social and ecosystem changes. We reviewed published animal coronavirus surveillance studies conducted in Africa, specifically summarizing surveillance approaches, species numbers tested, and findings. Far more surveillance has been initiated among bat populations than other wildlife and domestic animals, with nearly 26,000 bat individuals tested. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%. In addition to a large undescribed diversity, sequences related to four of the seven human coronaviruses have been reported from African bats. The review highlights research gaps and the disparity in surveillance efforts between different animal groups (particularly potential spillover hosts) and concludes with proposed strategies for improved future biosurveillance.


Assuntos
Infecções por Coronavirus/epidemiologia , Monitoramento Epidemiológico/veterinária , África/epidemiologia , Animais , Animais Selvagens/virologia , COVID-19/epidemiologia , Quirópteros/virologia , Coronaviridae/genética , Coronavirus/patogenicidade , Ecossistema , Variação Genética , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
8.
Viruses ; 13(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805487

RESUMO

Lagos bat virus (LBV), one of the 17 accepted viral species of the Lyssavirus genus, was the first rabies-related virus described in 1956. This virus is endemic to the African continent and is rarely encountered. There are currently four lineages, although the observed genetic diversity exceeds existing lyssavirus species demarcation criteria. Several exposures to rabid bats infected with LBV have been reported; however, no known human cases have been reported to date. This review provides the history of LBV and summarizes previous knowledge as well as new detections. Genetic diversity, pathogenesis and prevention are re-evaluated and discussed.


Assuntos
Quirópteros/virologia , Lyssavirus/classificação , Raiva/virologia , Animais , Variação Genética , Humanos , Lyssavirus/genética , Lyssavirus/patogenicidade , Filogenia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/virologia , África do Sul
9.
Trop Med Infect Dis ; 4(3)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269631

RESUMO

A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geoffroy's horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa.

10.
PLoS One ; 13(3): e0194527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579103

RESUMO

Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Genoma Viral/genética , Mamíferos/virologia , Zoonoses/virologia , Adenoviridae/genética , Adenoviridae/patogenicidade , Animais , Quirópteros/fisiologia , Biologia Computacional , Coronavirus/genética , Coronavirus/patogenicidade , Infecções por Coronavirus/veterinária , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/virologia , Variação Genética , Herpesviridae/genética , Herpesviridae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Filogenia , Filogeografia , Análise de Sequência de DNA , África do Sul
11.
Vector Borne Zoonotic Dis ; 13(7): 516-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23473214

RESUMO

Recent studies in several African countries have provided the first evidence for the presence of coronaviruses in African bats. Here we describe, for the first time, the detection of RNA of 3 unique coronavirus species in the tissues of South African bats.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Coronavirus/isolamento & purificação , Animais , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Filogenia , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA