Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 19(1): 56, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945578

RESUMO

BACKGROUND: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS: Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS: Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndromes Neurotóxicas , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Encéfalo , Feminino , Humanos , Ferro/farmacologia , Masculino , Metais , Camundongos , Síndromes Neurotóxicas/etiologia , Neurotransmissores/farmacologia , Material Particulado/análise , Material Particulado/toxicidade
3.
Neurotoxicology ; 84: 172-183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33794265

RESUMO

BACKGROUND: Exposure to air pollution has been identified as a possible environmental contributor to Alzheimer's Disease (AD) risk. As the number of people with AD worldwide continues to rise, it becomes vital to understand the nature of this potential gene-environment interaction. This study assessed the effects of short-term exposures to concentrated ambient ultrafine particulates (UFP, <100 nm) on measurements of amyloid-ß, tau, and microglial morphology. METHODS: Two cohorts of aged (12.5-14 months) 3xTgAD and NTg mice were exposed to concentrated ambient UFP or filtered air for 2 weeks (4-h/day, 4 days/week). Bronchoalveolar lavage fluid and brain tissue were collected twenty-four hours following the last exposure to evaluate lung inflammation, tau pathology, amyloid-ß pathology, and glial cell morphology. RESULTS: No exposure- or genotype-related changes were found with any of the measures of lung inflammation or in the hippocampal staining density of astrocyte marker glial fibrillary acidic protein. The microglia marker, ionized calcium binding adaptor molecule 1, and amyloid-ß marker, 6E10, exhibited significant genotype by exposure interactions such that levels were lower in the UFP-exposed as compared to filtered air-exposed 3xTgAD mice. When microglia morphology was assessed by Sholl analysis, microglia from both NTg mouse groups were ramified. The 3xTgAD air-exposed mice had the most ameboid microglia, while the 3xTgAD UFP-exposed mice had microglia that were comparatively more ramified. The 3xTgAD air-exposed mice had more plaques per region of interest as measured by Congo red staining as well as more plaque-associated microglia than the 3xTgAD UFP-exposed mice. The number of non-plaque-associated microglia was not affected by genotype or exposure. Levels of soluble and insoluble human amyloid-ß42 protein were measured in both 3xTgAD groups and no exposure effect was found. In contrast, UFP-exposure led to significant elevations in phosphorylated tau in 3xTgAD mice as compared to those that were exposed to air, as measured by pT205 staining. CONCLUSIONS: Exposure to environmentally relevant levels of ultrafine particulates led to changes in tau phosphorylation and microglial morphology in the absence of overt lung inflammation. Such changes highlight the need to develop greater mechanistic understanding of the link between air pollution exposure and Alzheimer's disease.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Tamanho da Partícula , Material Particulado/administração & dosagem , Proteínas tau/metabolismo
4.
Sci Rep ; 10(1): 458, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949204

RESUMO

Barium sulfate (BaSO4) was considered to be poorly-soluble and of low toxicity, but BaSO4 NM-220 showed a surprisingly short retention after intratracheal instillation in rat lungs, and incorporation of Ba within the bones. Here we show that static abiotic dissolution cannot rationalize this result, whereas two dynamic abiotic dissolution systems (one flow-through and one flow-by) indicated 50% dissolution after 5 to 6 days at non-saturating conditions regardless of flow orientation, which is close to the in vivo half-time of 9.6 days. Non-equilibrium conditions were thus essential to simulate in vivo biodissolution. Instead of shrinking from 32 nm to 23 nm (to match the mass loss to ions), TEM scans of particles retrieved from flow-cells showed an increase to 40 nm. Such transformation suggested either material transport through interfacial contact or Ostwald ripening at super-saturating conditions and was also observed in vivo inside macrophages by high-resolution TEM following 12 months inhalation exposure. The abiotic flow cells thus adequately predicted the overall pulmonary biopersistence of the particles that was mediated by non-equilibrium dissolution and recrystallization. The present methodology for dissolution and transformation fills a high priority gap in nanomaterial hazard assessment and is proposed for the implementation of grouping and read-across by dissolution rates.


Assuntos
Sulfato de Bário/química , Sulfato de Bário/metabolismo , Biomimética/instrumentação , Pulmão/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Administração por Inalação , Sulfato de Bário/administração & dosagem , Cinética , Solubilidade
5.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L940-L949, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28798254

RESUMO

Infants born prematurely often require supplemental oxygen, which contributes to aberrant lung development and increased pulmonary morbidity following a respiratory viral infection. We have been using a mouse model to understand how early-life hyperoxia affects the adult lung response to influenza A virus (IAV) infection. Prior studies showed how neonatal hyperoxia (100% oxygen) increased sensitivity of adult mice to infection with IAV [IAV (A/Hong Kong/X31) H3N2] as defined by persistent inflammation, pulmonary fibrosis, and mortality. Since neonatal hyperoxia alters lung structure, we used a novel fluorescence-expressing reporter strain of H1N1 IAV [A/Puerto Rico/8/34 mCherry (PR8-mCherry)] to evaluate whether it also altered early infection of the respiratory epithelium. Like Hong Kong/X31, neonatal hyperoxia increased morbidity and mortality of adult mice infected with PR8-mCherry. Whole lung imaging and histology suggested a modest increase in mCherry expression in adult mice exposed to neonatal hyperoxia compared with room air-exposed animals. However, this did not reflect an increase in airway or alveolar epithelial infection when mCherry-positive cells were identified and quantified by flow cytometry. Instead, a modest increase in the number of CD45-positive macrophages expressing mCherry was detected. While neonatal hyperoxia does not alter early epithelial infection with IAV, it may increase the activity of macrophages toward infected cells, thereby enhancing early epithelial injury.


Assuntos
Hiperóxia/virologia , Infecções por Orthomyxoviridae/virologia , Oxigênio/metabolismo , Fibrose Pulmonar/virologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epitélio/virologia , Humanos , Hiperóxia/patologia , Vírus da Influenza A , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL
6.
Part Fibre Toxicol ; 14(1): 12, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28410606

RESUMO

BACKGROUND: Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS: Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS: Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.


Assuntos
Pontos Quânticos/metabolismo , Absorção Cutânea/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Transporte Biológico , Movimento Celular , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Camundongos Pelados , Camundongos Endogâmicos C57BL , Doses de Radiação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Absorção Cutânea/efeitos dos fármacos , Fatores de Tempo , Distribuição Tecidual
7.
Am J Respir Cell Mol Biol ; 56(4): 453-464, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27967234

RESUMO

An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus. This was not seen in infected siblings birthed into room air. Genetic lineage tracing studies in mice exposed to neonatal hypoxia or hyperoxia revealed pre-existing secretoglobin 1a1+ cells produced airway cells expressing SP-C and ATP binding cassette subfamily A member 3. Pre-existing Kr5+ progenitor cells produced squamous alveolar cells expressing receptor for advanced glycation endproducts, aquaporin 5, and T1α in alveoli devoid of AEC2s. They were not the source of KRT5+ alveolar pod cells. These oxygen-dependent changes in epithelial cell regeneration and fibrosis could be recapitulated by conditionally depleting AEC2s in mice using diphtheria A toxin and then infecting with influenza A virus. Likewise, airway cells expressing SP-C and alveolar cells expressing KRT5 were observed in human idiopathic pulmonary fibrosis. These findings suggest that alternative progenitor lineages are mobilized to regenerate the alveolar epithelium when AEC2s are severely injured or depleted by previous insults, such as an adverse oxygen environment at birth. Because these lineages regenerate AECs in spatially distinct compartments of a lung undergoing fibrosis, they may not be sufficient to prevent disease.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Linhagem da Célula , Células-Tronco/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Queratina-5/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Uteroglobina/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1222-L1233, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836898

RESUMO

Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.


Assuntos
Biomassa , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Transdução de Sinais , Fumaça/efeitos adversos , Animais , Compostos Azo/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Cavalos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Material Particulado/análise , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
9.
Stem Cells ; 34(5): 1396-406, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26891117

RESUMO

Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice. Birth into low (12%) or high (≥60%) oxygen stimulated expansion of AEC2s through self-renewal and differentiation of the airway Scgb1a1 + lineage. This non-linear or hormesis response to oxygen was specific for the alveolar epithelium because low oxygen stimulated and high oxygen inhibited angiogenesis as defined by changes in V-cadherin and PECAM (CD31). Although genetic lineage tracing studies confirmed adult AEC2s are stem cells for AEC1s, we found no evidence that postnatal growth of AEC1s were derived from self-renewing Sftpc + or the Scbg1a1 + lineage of AEC2s. Taken together, our results show how a non-linear response to oxygen at birth promotes expansion of AEC2s through two distinct lineages. Since neither lineage contributes to the postnatal expansion of AEC1s, the ability of AEC2s to function as stem cells for AEC1s appears to be restricted to the adult lung. Stem Cells 2016;34:1396-1406.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais Alveolares/citologia , Células Epiteliais/citologia , Pulmão/citologia , Oxigênio/farmacologia , Células-Tronco/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Modelos Biológicos
10.
Part Fibre Toxicol ; 11: 5, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24456852

RESUMO

BACKGROUND: The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose-response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs. We hypothesize that the delivered dose rate is a key determinant of the inflammatory response in the RT when the deposited dose is constant. METHODS: F-344 rats were exposed to the same deposited doses of titanium dioxide (TiO2) NPs by single or repeated high dose rate intratracheal instillation or low dose rate whole body aerosol inhalation. Controls were exposed to saline or filtered air. Bronchoalveolar lavage fluid (BALF) neutrophils, biochemical parameters and inflammatory mediator release were quantified 4, 8, and 24 hr and 7 days after exposure. RESULTS: Although the initial lung burdens of TiO2 were the same between the two methods, instillation resulted in greater short term retention than inhalation. There was a statistically significant increase in BALF neutrophils at 4, 8 and 24 hr after the single high dose TiO2 instillation compared to saline controls and to TiO2 inhalation, whereas TiO2 inhalation resulted in a modest, yet significant, increase in BALF neutrophils 24 hr after exposure. The acute inflammatory response following instillation was driven primarily by monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, mainly within the lung. Increases in heme oxygenase-1 in the lung were also higher following instillation than inhalation. TiO2 inhalation resulted in few time dependent changes in the inflammatory mediator release. The single low dose and repeated exposure scenarios had similar BALF cellular and mediator response trends, although the responses for single exposures were more robust. CONCLUSIONS: High dose rate NP delivery elicits significantly greater inflammation compared to low dose rate delivery. Although high dose rate methods can be used for quantitative ranking of NP hazards, these data caution against their use for quantitative risk assessment.


Assuntos
Nanopartículas/metabolismo , Doenças Respiratórias/patologia , Titânio/farmacocinética , Administração por Inalação , Animais , Carga Corporal (Radioterapia) , Líquido da Lavagem Broncoalveolar/citologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Exposição por Inalação , Intubação Intratraqueal , Pulmão/citologia , Pulmão/metabolismo , Masculino , Nanopartículas/administração & dosagem , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Pneumonia/induzido quimicamente , Pneumonia/patologia , Ratos , Ratos Endogâmicos F344 , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/metabolismo , Medição de Risco , Solubilidade , Irrigação Terapêutica
11.
Proc Natl Acad Sci U S A ; 110(36): 14771-6, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959870

RESUMO

Whereas amyloid-ß (Aß) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aß accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aß precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aß accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aß transporter, and higher brain Aß levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aß synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aß production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aß homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aß levels in the aging brain.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Cobre/farmacologia , Homeostase/efeitos dos fármacos , Fatores Etários , Peptídeos beta-Amiloides/farmacocinética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Western Blotting , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Capilares/efeitos dos fármacos , Capilares/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobre/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Radioisótopos do Iodo/farmacocinética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Nanotoxicology ; 7(8): 1386-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23078247

RESUMO

Ultraviolet radiation (UVR) skin exposure is a common exogenous insult that can alter skin barrier and immune functions. With the growing presence of nanoparticles (NPs) in consumer goods and technological applications the potential for NPs to contact UVR-exposed skin is increasing. Therefore it is important to understand the effect of UVR on NP skin penetration and the potential for systemic translocation. Previous studies qualitatively showed that UVR skin exposure can increase the penetration of NPs below the stratum corneum. In this work, an in vivo mouse model was used to quantitatively examine the skin penetration of carboxylated (CdSe/ZnS, core/shell) quantum dots (QDs) through intact and UVR barrier-disrupted murine skin by organ Cd mass analysis. Transepidermal water loss was used to measure the magnitude of the skin barrier defect as a function of UVR dose and time post-UVR exposure. QDs were applied to mice 3-4 days post-UVR exposure at the peak of the skin barrier disruption. Our results reveal unexpected trends that suggest these negative-charged QDs can penetrate barrier intact skin and that penetration and systemic transport depends on the QD application time post-UVR exposure. The effect of UVR on skin-resident dendritic cells and their role in the systemic translocation of these QDs are described. Our results suggest that NP skin penetration and translocation may depend on the specific barrier insult and the inflammatory status of the skin.


Assuntos
Pontos Quânticos , Absorção Cutânea/efeitos da radiação , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Análise de Variância , Animais , Feminino , Células de Langerhans/efeitos da radiação , Masculino , Camundongos , Pele/química , Distribuição Tecidual , Água/análise , Água/metabolismo
13.
Neurotoxicology ; 34: 118-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23146871

RESUMO

Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe(3+) via the Tf mechanism is well understood, uptake of Mn(3+) via this mechanism has not been systematically studied. The stability of the Mn(3+)Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn(3+)Tf and biophysical tools, we have developed a novel approach to study Mn(3+)Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn(3+)Tf into neuronal cell lines with published descriptions of Fe(3+) uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn(3+) is transported by the Tf mechanism similarly to Fe(3+)Tf transport; although Mn(3+)Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types.


Assuntos
Gânglios da Base/metabolismo , Hipocampo/metabolismo , Manganês/metabolismo , Neurônios/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Animais , Gânglios da Base/citologia , Gânglios da Base/efeitos dos fármacos , Ligação Competitiva , Transporte Biológico , Células Cultivadas , Clorpromazina/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Endossomos/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hidrazonas/farmacologia , Ferro/metabolismo , Cinética , Manganês/toxicidade , Camundongos , Microscopia Confocal , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Espectrofotometria Atômica , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X
14.
J Neurosci ; 32(14): 5010-5, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492056

RESUMO

Iron is critical in multiple aspects of CNS development, but its role in neurodevelopment--the ability of iron deficiency to alter normal development--is difficult to dissociate from the effects of anemia. We developed a novel dietary restriction model in the rat that allows us to study the effects of iron deficiency in the absence of severe anemia. Using a combination of auditory brainstem response analyses (ABR) and electron microscopy, we identified an unexpected impact of nonanemic iron deficiency on axonal diameter and neurofilament regulation in the auditory nerve. These changes are associated with altered ABR latency during development. In contrast to models of severe iron deficiency with anemia, we did not find consistent or prolonged defects in myelination. Our data demonstrate that iron deficiency in the absence of anemia disrupts normal development of the auditory nerve and results in altered conduction velocity.


Assuntos
Axônios/fisiologia , Nervo Coclear/crescimento & desenvolvimento , Nervo Coclear/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Deficiências de Ferro , Animais , Axônios/metabolismo , Axônios/patologia , Nervo Coclear/patologia , Feminino , Ferro/sangue , Ferro da Dieta/sangue , Condução Nervosa/fisiologia , Gravidez , Ratos , Ratos Endogâmicos F344
15.
Toxicology ; 297(1-3): 1-9, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22487507

RESUMO

There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO(2) NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 h incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency.


Assuntos
Nanopartículas Metálicas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Testes de Toxicidade/métodos
16.
Toxicology ; 287(1-3): 99-104, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21722700

RESUMO

Studies showed that certain cytotoxicity assays were not suitable for assessing nanoparticle (NP) toxicity. We evaluated a lactate dehydrogenase (LDH) assay for assessing copper (Cu-40, 40nm), silver (Ag-35, 35nm; Ag-40, 40nm), and titanium dioxide (TiO(2)-25, 25nm) NPs by examining their potential to inactivate LDH and interference with ß-nicotinamide adenine dinucleotide (NADH), a substrate for the assay. We also performed a dissolution assay for some of the NPs. We found that the copper NPs, because of their high dissolution rate, could interfere with the LDH assay by inactivating LDH. Ag-35 could also inactivate LDH probably because of the carbon matrix used to cage the particles during synthesis. TiO(2)-25 NPs were found to adsorb LDH molecules. In conclusion, NP interference with the LDH assay depends on the type of NPs and the suitability of the assay for assessing NP toxicity should be examined case by case.


Assuntos
L-Lactato Desidrogenase/metabolismo , Nanopartículas/toxicidade , Animais , Células Cultivadas , Cobre/toxicidade , Relação Dose-Resposta a Droga , Masculino , NAD/metabolismo , Tamanho da Partícula , Ratos , Prata/toxicidade , Titânio/toxicidade
17.
PLoS One ; 6(3): e17483, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21423661

RESUMO

It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring.Our data may have significant relevance for understanding the impact of suboptimal iron levels during pregnancy not only on the mother but also on the developing fetus and hence might lead to a more informed timing of iron supplementation during pregnancy.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Deficiências de Ferro , Ferro da Dieta/farmacologia , Modelos Biológicos , Anemia Ferropriva/complicações , Anemia Ferropriva/fisiopatologia , Animais , Animais Recém-Nascidos , Nervo Coclear/efeitos dos fármacos , Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Humanos , Masculino , Condução Nervosa/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley
18.
Nanotoxicology ; 4(1): 42-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20795901

RESUMO

The dispersion in air of nanoparticles of different sizes, materials and morphologies with controlled agglomeration involving aerosol delivery for in vivo and in vitro studies is one of the most difficult challenges in the field of nanoparticle toxicology. We describe here a nanoparticle dispersion system using an electrospray method to deliver airborne nanoparticles (approximately 10-100 nm) with spatial uniformity and controllable particle concentration for in vitro and in vivo studies. With the dispersion method, single nanoparticles (polystyrene latex particles, TiO(2), Au, Mn, quantum dots, and carbon nanotubes) can be delivered to cells and animals via the air. The degree of agglomeration can be controlled by changing the suspension feeding rate to simulate realistic conditions for exposure studies.


Assuntos
Aerossóis/toxicidade , Técnicas Eletroquímicas , Nanopartículas/toxicidade , Nanotubos de Carbono/toxicidade , Aerossóis/química , Animais , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Exposição por Inalação , Tamanho da Partícula , Ratos
19.
Nanotoxicology ; 4(1): 106-119, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20730025

RESUMO

Short and long-term pulmonary response to inhaled nickel hydroxide nanoparticles (nano-Ni(OH)(2), CMD = 40 nm) in C57BL/6 mice was assessed using a whole body exposure system. For short-term studies mice were exposed for 4 h to nominal concentrations of 100, 500, and 1000 mg/m(3). For long-term studies mice were exposed for 5 h/d, 5 d/w, for up to 5 months (m) to a nominal concentration of 100 mg/m(3). Particle morphology, size distribution, chemical composition, solubility, and intrinsic oxidative capacity were determined. Markers of lung injury and inflammation in bronchoalveolar lavage fluid (BALF); histopathology; and lung tissue elemental nickel content and mRNA changes in macrophage inflammatory protein-2 (Mip-2), chemokine ligand 2 (Ccl2), interleukin 1-alpha (Il-1α), and tumor necrosis factor-alpha (Tnf-α) were assessed. Dose-related changes in BALF analyses were observed 24 h after short-term studies while significant changes were noted after 3 m and/or 5 m of exposure (24 h). Nickel content was detected in lung tissue, Ccl2 was most pronouncedly expressed, and histological changes were noted after 5 m of exposure. Collectively, data illustrates nano-Ni(OH)(2) can induce inflammatory responses in C57BL/6 mice.

20.
Environ Health Perspect ; 118(2): 242-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20123608

RESUMO

BACKGROUND: Many populations are exposed to multiple species of mercury (Hg), predominantly organic Hg as methylmercury (MeHg) from fish, and inorganic Hg as Hg vapor from dental amalgams. Most of our knowledge of the neurotoxicity of Hg is based on research devoted to studying only one form at a time, mostly MeHg. OBJECTIVES: In this study we investigated the effects of prenatal exposure to MeHg and Hg vapor on Hg concentrations in the brain of neonatal rats. METHODS: Female Long-Evans hooded rats were exposed to MeHg (0, 3, 6, or 9 ppm as drinking solution), Hg vapor (0, 300, or 1,000 microg/m3 for 2 hr/day), or the combination of both, from 30 days before breeding through gestational day 18. On postnatal day 4, whole brains were taken from one male and one female from each of four litters in each treatment group to assess organic and inorganic Hg in the brain by cold vapor atomic absorption spectrometry. RESULTS: Statistical analysis using linear mixed effects models showed that MeHg dose was the primary determinant of both organic and inorganic brain Hg levels. For both outcomes, we also found significant interactions between MeHg and Hg vapor exposure. These interactions were driven by the fact that among animals not exposed to MeHg, animals exposed to Hg vapor had significantly greater organic and inorganic brain Hg levels than did unexposed animals. CONCLUSION: This interaction, heretofore not reported, suggests that coexposure to MeHg and Hg vapor at levels relevant to human exposure might elevate neurotoxic risks.


Assuntos
Encéfalo/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Mercúrio/efeitos adversos , Compostos de Metilmercúrio/efeitos adversos , Gravidez , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA