Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8341, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333539

RESUMO

Hypercholesterolemia is a major risk factor for atherosclerosis and associated cardiovascular diseases. The liver plays a key role in the regulation of plasma cholesterol levels and hosts a large population of tissue-resident macrophages known as Kupffer cells (KCs). KCs are located in the hepatic sinusoids where they ensure key functions including blood immune surveillance. However, how KCs homeostasis is affected by the build-up of cholesterol-rich lipoproteins that occurs in the circulation during hypercholesterolemia remains unknown. Here, we show that embryo-derived KCs (EmKCs) accumulate large amounts of lipoprotein-derived cholesterol, in part through the scavenger receptor CD36, and massively expand early after the induction of hypercholesterolemia. After this rapid adaptive response, EmKCs exhibit mitochondrial oxidative stress and their numbers gradually diminish while monocyte-derived KCs (MoKCs) with reduced cholesterol-loading capacities seed the KC pool. Decreased proportion of EmKCs in the KC pool enhances liver cholesterol content and exacerbates hypercholesterolemia, leading to accelerated atherosclerotic plaque development. Together, our data reveal that KC homeostasis is perturbed during hypercholesterolemia, which in turn alters the control of plasma cholesterol levels and increases atherosclerosis.


Assuntos
Aterosclerose , Antígenos CD36 , Colesterol , Hipercolesterolemia , Células de Kupffer , Fígado , Camundongos Endogâmicos C57BL , Células de Kupffer/metabolismo , Animais , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Colesterol/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Masculino , Monócitos/metabolismo , Estresse Oxidativo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Camundongos Knockout , Feminino , Homeostase
2.
Nat Commun ; 15(1): 5413, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926424

RESUMO

Diet composition impacts metabolic health and is now recognized to shape the immune system, especially in the intestinal tract. Nutritional imbalance and increased caloric intake are induced by high-fat diet (HFD) in which lipids are enriched at the expense of dietary fibers. Such nutritional challenge alters glucose homeostasis as well as intestinal immunity. Here, we observed that short-term HFD induced dysbiosis, glucose intolerance and decreased intestinal RORγt+ CD4 T cells, including peripherally-induced Tregs and IL17-producing (Th17) T cells. However, supplementation of HFD-fed male mice with the fermentable dietary fiber fructooligosaccharides (FOS) was sufficient to maintain RORγt+ CD4 T cell subsets and microbial species known to induce them, alongside having a beneficial impact on glucose tolerance. FOS-mediated normalization of Th17 cells and amelioration of glucose handling required the cDC2 dendritic cell subset in HFD-fed animals, while IL-17 neutralization limited FOS impact on glucose tolerance. Overall, we uncover a pivotal role of cDC2 in the control of the immune and metabolic effects of FOS in the context of HFD feeding.


Assuntos
Células Dendríticas , Dieta Hiperlipídica , Homeostase , Camundongos Endogâmicos C57BL , Oligossacarídeos , Animais , Oligossacarídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Masculino , Camundongos , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/efeitos dos fármacos , Glucose/metabolismo , Interleucina-17/metabolismo , Fibras na Dieta/farmacologia , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 120(50): e2311566120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064511

RESUMO

Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.


Assuntos
Linfócitos T Reguladores , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Diferenciação Celular/genética , Timo , Colo , Fatores de Transcrição Forkhead/genética
4.
Nat Rev Immunol ; 23(11): 749-762, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37316560

RESUMO

Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Humanos , Intestinos , Antígenos , Receptores de Antígenos de Linfócitos T , Fatores de Transcrição Forkhead
5.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910978

RESUMO

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo , Animais , Humanos , Inflamação , Macrófagos , Camundongos , Camundongos Knockout
6.
Immunity ; 53(3): 627-640.e5, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562600

RESUMO

Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring mature EmKC markers. While KCs as a whole favored hepatic triglyceride storage during NASH, EmKCs promoted it more efficiently than MoKCs, and the latter exacerbated liver damage, highlighting functional differences among KCs with different origins. Overall, our data reveal that KC homeostasis is impaired during NASH, altering the liver response to lipids, as well as KC ontogeny.


Assuntos
Autorrenovação Celular/fisiologia , Células de Kupffer/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Proliferação de Células/fisiologia , Lipídeos/análise , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA