Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 223: 113174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746067

RESUMO

The use of targeted alpha therapy (TAT) for bone cancer is increasing each year. Among the alpha radionuclides, radium [223Ra]Ra+2 is the first one approved for bone cancer metastasis therapy. The development of novel radiopharmaceutical based on [223Ra]Ra+2 is essential to continuously increase the arsenal of new TAT drugs. In this study we have developed, characterized, and in vitro evaluated [223Ra] Ra-nano-hydroxyapatite. The results showed that [223Ra] Ra-nano-hydroxyapatite has a dose-response relationship for osteosarcoma cells and a safety profile for human fibroblast cells, corroborating the application as a radiopharmaceutical.


Assuntos
Neoplasias Ósseas , Nanoestruturas , Osteossarcoma , Rádio (Elemento) , Humanos , Compostos Radiofarmacêuticos , Rádio (Elemento)/química , Rádio (Elemento)/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770386

RESUMO

Although several studies assess the biological effects of micro and titanium dioxide nanoparticles (TiO2 NPs), the literature shows controversial results regarding their effect on bone cell behavior. Studies on the effects of nanoparticles on mammalian cells on two-dimensional (2D) cell cultures display several disadvantages, such as changes in cell morphology, function, and metabolism and fewer cell-cell contacts. This highlights the need to explore the effects of TiO2 NPs in more complex 3D environments, to better mimic the bone microenvironment. This study aims to compare the differentiation and mineralized matrix production of human osteoblasts SAOS-2 in a monolayer or 3D models after exposure to different concentrations of TiO2 NPs. Nanoparticles were characterized, and their internalization and effects on the SAOS-2 monolayer and 3D spheroid cells were evaluated with morphological analysis. The mineralization of human osteoblasts upon exposure to TiO2 NPs was evaluated by alizarin red staining, demonstrating a dose-dependent increase in mineralized matrix in human primary osteoblasts and SAOS-2 both in the monolayer and 3D models. Furthermore, our results reveal that, after high exposure to TiO2 NPs, the dose-dependent increase in the bone mineralized matrix in the 3D cells model is higher than in the 2D culture, showing a promising model to test the effect on bone osteointegration.

3.
Stem Cell Investig ; 10: 4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817259

RESUMO

Objective: This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background: The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods: The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions: Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.

4.
Curr Top Med Chem ; 22(30): 2527-2533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35549877

RESUMO

BACKGROUND: Nanoparticles (NPs) have gained great importance during the last decades for developing new therapeutics with improved outcomes for biomedical applications due to their nanoscale size, surface properties, loading capacity, controlled drug release, and distribution. Among the carbon-based nanomaterials, one of the most biocompatible forms of graphene is graphene quantum dots (GQDs). GQDs are obtained by converting 2D graphene into zero-dimensional graphene nanosheets. Moreover, very few reports in the literature reported the pharmacokinetic studies proving the safety and effectiveness of GQDs for in vivo applications. OBJECTIVES: This study evaluated the pharmacokinetics of GQDs radiolabeled with 99mTc, administered intravenously, in rodents (Wistar rats) in two conditions: short and long periods, to compare and understand the biological behavior. METHODS: The graphene quantum dots were produced and characterized by RX diffractometry, Raman spectroscopy, and atomic force microscopy. The pharmacokinetic analysis was performed following the radiopharmacokinetics concepts, using radiolabeled graphene quantum dots with technetium 99 metastable (99mTc). The radiolabeling process of the graphene quantum dots with 99mTc was performed by the direct via. RESULTS: The results indicate that the pharmacokinetic analyses with GQDs over a longer period were more accurate. Following a bicompartmental model, the long-time analysis considers each pharmacokinetic phase of drugs into the body. Furthermore, the data demonstrated that short-time analysis could lead to distortions in pharmacokinetic parameters, leading to misinterpretations. CONCLUSION: The evaluation of the pharmacokinetics of GQDs over long periods is more meaningful than the evaluation over short periods.


Assuntos
Grafite , Nanopartículas , Nanoestruturas , Pontos Quânticos , Animais , Ratos , Pontos Quânticos/química , Grafite/química , Ratos Wistar
5.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406278

RESUMO

Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.

6.
Drug Deliv ; 29(1): 186-191, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35191342

RESUMO

The treatment of bone metastatsis as primary bone cancer itself is still a challenge. The use od radium dichloride ([223Ra] RaCl2) has emerged in the last few years as one of the best treatment choice for bone cancer, with especial focus in bone metastasis. The alpha-emitter radiopharmaceutical has showed potent and efficient results in several clinical trials. In this study we have formulated radium dichloride ([223Ra] RaCl2) nanomicelles in order to evaluate and compare with pure radium dichloride ([223Ra] RaCl2). The results showed that nanomicelles at the same dose had a superior effect (20% higher efficient) when compared with pure radium dichloride ([223Ra] RaCl2). The results corroborated the effectiveness of the nanosystem validating the application of nanotechnology in alpha-radiotherapy with radium dichloride ([223Ra] RaCl2).


Assuntos
Neoplasias Ósseas/patologia , Nanopartículas/química , Osteossarcoma/patologia , Compostos Radiofarmacêuticos/farmacologia , Rádio (Elemento)/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Humanos , Micelas , Tamanho da Partícula , Poloxâmero/química , Radioisótopos/administração & dosagem , Radioisótopos/farmacologia , Compostos Radiofarmacêuticos/administração & dosagem , Rádio (Elemento)/administração & dosagem
7.
J Nanostructure Chem ; 12(5): 693-727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34512930

RESUMO

Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations.

8.
J Biomed Nanotechnol ; 17(9): 1858-1865, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688331

RESUMO

The necessity of new drugs with special attention for the therapy of cancer is increasing each day. Despite their properties, alpha therapeutic radiopharmaceuticals, especially based on the use of radium (223Ra) are good choices, due to the highest and differential cytotoxicity, low adverse effects, and higher bioaccumulation on tumor sites. The use of graphene quantum dots as the carrier for 223Ra is a promising approach since graphene quantum dots has low toxicity, high biocompatibility, and adequate size for tumor penetration. In this study, we developed, characterized, radiolabeled with 223Ra, and evaluated in vitro and in vivo graphene quantum dots radiolabeled with radium (223Ra) for bone cancer. The results showed that 223Ra is incorporated into the graphene quantum dot following the Fajans-Paneth-Hahn Law. The cell viability showed a potent effect on osteosarcoma cells (MG63 and SAOS2) but a lower effect in normal fibroblast cells (hFB), corroborating the preferential targeting. Also, the results showed a more prominent effect on MG63 than SAOS2 cells, corroborating the targeting for more undifferentiated cells. The in vivo results demonstrated a renal excretion, associated with fecal excretion and accumulation in bone. The results corroborate the efficacy of 223RaGQDs and open new perspectives for the use of use 223RaGQDs, in several other diseases.


Assuntos
Neoplasias Ósseas , Grafite , Osteossarcoma , Pontos Quânticos , Rádio (Elemento) , Neoplasias Ósseas/radioterapia , Humanos , Osteossarcoma/radioterapia
9.
Colloids Surf B Biointerfaces ; 206: 111952, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273810

RESUMO

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. It is a long-lasting autoimmune disease, which mainly affects the joints causing inflammation and swelling of the synovial joint. RA has a significant impact on the ability to perform daily activities including simple work and household chores. Nonetheless, due to the long periods of pain and the continuous use of anti-inflammatory drugs, RA can debilitate the quality of life and increases mortality. Current therapeutic approaches to treat RA aim to achieve prolonged activity and early and persistent remission of the disease, with the gradual adoption of different drugs available. In this study, we developed a novel hydroxychloroquine and methotrexate co-loaded Pluronic® F-127 nanomicelle and evaluated its therapeutic effects against RA. Our results showed that drug-loaded nanomicelles were capable of modulating the inflammatory process of RA and reducing osteoclastogenesis, edema, and cell migration to the joint. Overall, compared to the free drugs, the drug-loaded nanomicelles showed a 2-fold higher therapeutic effect.


Assuntos
Artrite Reumatoide , Metotrexato , Artrite Reumatoide/tratamento farmacológico , Humanos , Hidroxicloroquina/farmacologia , Articulações , Metotrexato/farmacologia , Qualidade de Vida
10.
J Biomed Nanotechnol ; 17(1): 131-148, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653502

RESUMO

Graphene, including graphene quantum dots, its oxide and unoxidized forms (pure graphene) have several properties, like fluorescence, electrical conductivity, theoretical surface area, low toxicity, and high biocompatibility. In this study, we evaluated genotoxicity (in silico analysis using the functional density theory-FDT), cytotoxicity (human glioblastoma cell line), in vivo pharmacokinetics, in vivo impact on microcirculation and cell internalization assay. It was also radiolabeled with lutetium 177 (177Lu), a beta emitter radioisotope to explore its therapeutic use as nanodrug. Finally, the impact of its disposal in the environment was analyzed using ecotoxicological evaluation. FDT analysis demonstrated that graphene can construct covalent and non-covalent bonds with different nucleobases, and graphene oxide is responsible for generation of reactive oxygen species (ROS), corroborating its genotoxicity. On the other hand, non-cytotoxic effect on glioblastoma cells could be demonstrated. The pharmacokinetics analysis showed high plasmatic concentration and clearance. Topical application of 0.1 and 1 mg/kg of graphene nanoparticles on the hamster skinfold preparation did not show inflammatory effect. The cell internalization assay showed that 1-hour post contact with cells, graphene can cross the plasmatic membrane and accumulate in the cytoplasm. Radio labeling with 177Lu is possible and its use as therapeutic nanosystem is viable. Finally, the ecotoxicity analysis showed that A. silina exposed to graphene showed pronounced uptake and absorption in the nauplii gut and formation of ROS. The data obtained showed that although being formed exclusively of carbon and carbon-oxygen, graphene and graphene oxide respectively generate somewhat contradictory results and more studies should be performed to certify the safety use of this nanoplatform.


Assuntos
Grafite , Nanopartículas , Pontos Quânticos , Sobrevivência Celular , Grafite/toxicidade , Humanos , Óxidos , Espécies Reativas de Oxigênio
11.
J Cell Physiol ; 234(4): 4140-4153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171612

RESUMO

The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Diferenciação Celular , Consolidação da Fratura , Osteoblastos/metabolismo , Osteogênese , Tíbia/metabolismo , Fraturas da Tíbia/metabolismo , Células 3T3 , Animais , Proteína Morfogenética Óssea 7/farmacologia , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais , Tíbia/patologia , Tíbia/fisiopatologia , Fraturas da Tíbia/genética , Fraturas da Tíbia/patologia , Fraturas da Tíbia/fisiopatologia , Fatores de Tempo
12.
J Bone Miner Res ; 33(6): 1141-1153, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444358

RESUMO

Lipocalin 2 (Lcn2) is an adipokine that carries out a variety of functions in diverse organs. We investigated the bone phenotype and the energy metabolism of Lcn2 globally deleted mice (Lcn2-/- ) at different ages. Lcn2-/- mice were largely osteopenic, exhibiting lower trabecular bone volume, lesser trabecular number, and higher trabecular separation when compared to wild-type (WT) mice. Lcn2-/- mice showed a lower osteoblast number and surface over bone surface, and subsequently a significantly lower bone formation rate, while osteoclast variables were unremarkable. Surprisingly, we found no difference in alkaline phosphatase (ALP) activity or in nodule mineralization in Lcn2-/- calvaria osteoblast cultures, while less ALP-positive colonies were obtained from freshly isolated Lcn2-/- bone marrow stromal cells, suggesting a nonautonomous osteoblast response to Lcn2 ablation. Given that Lcn2-/- mice showed higher body weight and hyperphagia, we investigated whether their osteoblast impairment could be due to altered energy metabolism. Lcn2-/- mice showed lower fasted glycemia and hyperinsulinemia. Consistently, glucose tolerance was significantly higher in Lcn2-/- compared to WT mice, while insulin tolerance was similar. Lcn2-/- mice also exhibited polyuria, glycosuria, proteinuria, and renal cortex vacuolization, suggesting a kidney contribution to their phenotype. Interestingly, the expression of the glucose transporter protein type 1, that conveys glucose into the osteoblasts and is essential for osteogenesis, was significantly lower in the Lcn2-/- bone, possibly explaining the in vivo osteoblast impairment induced by the global Lcn2 ablation. Taken together, these results unveil an important role of Lcn2 in bone metabolism, highlighting a link with glucose metabolism that is more complex than expected from the current knowledge. © 2018 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/metabolismo , Metabolismo Energético , Lipocalina-2/metabolismo , Adiposidade , Animais , Biomarcadores/metabolismo , Peso Corporal , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea , Transportador de Glucose Tipo 1/metabolismo , Gônadas/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
13.
Nanoscale ; 9(30): 10684-10693, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28654127

RESUMO

While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

14.
Arch Biochem Biophys ; 561: 88-98, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24976174

RESUMO

Bone is a highly dynamic and specialized tissue, capable of regenerating itself spontaneously when afflicted by minor injuries. Nevertheless, when major lesions occur, it becomes necessary to use biomaterials, which are not only able to endure the cellular proliferation and migration, but also to substitute the original tissue or integrate itself to it. With the life expectancy growth, regenerative medicine has been gaining constant attention in the reconstructive field of dentistry and orthopedy. Focusing on broadening the therapeutic possibilities for the regeneration of injured organs, the development of biomaterials allied with the applicability of gene therapy and bone bioengineering has been receiving vast attention over the recent years. The progress of cellular and molecular biology techniques gave way to new-guided therapy possibilities. Supported by multidisciplinary activities, tissue engineering combines the interaction of physicists, chemists, biologists, engineers, biotechnologist, dentists and physicians with common goals: the search for materials that could promote and lead cell activity. A well-oriented combining of scaffolds, promoting factors, cells, together with gene therapy advances may open new avenues to bone healing in the near future. In this review, our target was to write a report bringing overall concepts on tissue bioengineering, with a special attention to decisive biological parameters for the development of biomaterials, as well as to discuss known intracellular signal transduction as a new manner to be explored within this field, aiming to predict in vitro the quality of the host cell/material and thus contributing with the development of regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Humanos , Desenho de Prótese , Engenharia Tecidual/métodos
15.
Arch Biochem Biophys ; 561: 109-17, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25034215

RESUMO

Bone vasculature plays a vital role in bone development, remodeling and homeostasis. New blood vessel formation is crucial during both primary bone development as well as fracture repair in adults. Both bone repair and bone remodeling involve the activation and complex interaction between angiogenic and osteogenic pathways. Interestingly studies have demonstrated that angiogenesis precedes the onset of osteogenesis. Indeed reduced or inadequate blood flow has been linked to impaired fracture healing and old age related low bone mass disorders such as osteoporosis. Similarly the slow penetration of host blood vessels in large engineered bone tissue grafts has been cited as one of the major hurdle still impeding current bone construction engineering strategies. This article reviews the current knowledge elaborating the importance of vascularization during bone healing and remodeling, and the current therapeutic strategies being adapted to promote and improve angiogenesis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Remodelação Óssea/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Animais , Comunicação Celular/fisiologia , Células Endoteliais/citologia , Humanos , Osteoblastos/citologia , Engenharia Tecidual/instrumentação
16.
Biotechnol Bioeng ; 111(9): 1900-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24668294

RESUMO

In degenerative diseases or lesions, bone tissue replacement and regeneration are important clinical goals. The most used bone substitutes today are hydroxyapatite (HA) scaffolds. These scaffolds, developed over the last few decades, present high porosity and good osteointegration, but haven't completely solved issues related to bone defects. Moreover, the exact intracellular mechanisms involved in the response to HA have yet to be addressed. This prompted us to investigate the protein networks responsible for signal transduction during early osteoblast adhesion on synthetic HA scaffolds. By performing a global kinase activity assay, we showed that there is a specific molecular machinery responding to HA contact, immediately triggering pathways leading to cytoskeleton rearrangement due to activation of Adducin 1 (ADD1), protein kinase A (PKA), protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Moreover, we found a significantly increased phosphorylation of the activating site Ser-421 in histone deacetylase 1 (HDAC1), a substrate of Cyclin-Dependent Kinase 5 (CDK5). These phosphorylation events are hallmarks of osteoblast differentiation, pointing to HA surfaces ability to promote differentiation. We also found that AKT was kept active, suggesting the maintenance of survival pathways. Interestingly, though, the substrate sequence of CDK5 also presented higher phosphorylation levels when compared to control conditions. To our knowledge, this kinase has never before been related to osteoblast biology, opening a new avenue of investigation for novel pathways involved in this matter. These results suggest that HA triggers a specific intracellular signal transduction cascade during early osteoblast adhesion, activating proteins involved with cytoskeleton rearrangement, and induction of osteoblast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Durapatita/metabolismo , Osteoblastos/fisiologia , Proteínas Quinases/análise , Proteoma/análise , Transdução de Sinais , Animais , Materiais Biocompatíveis/metabolismo , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA