Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669113

RESUMO

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Animais , Camundongos , Reprogramação Celular , Inativação do Cromossomo X/genética , Cromossomo X/genética , Estruturas Cromossômicas , Coesinas
2.
PLoS Comput Biol ; 17(11): e1009582, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762642

RESUMO

Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
3.
Genome Biol ; 22(1): 171, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082786

RESUMO

BACKGROUND: Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS: We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


Assuntos
Processamento Alternativo/genética , Reprogramação Celular/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
4.
Nat Chem Biol ; 11(4): 280-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751279

RESUMO

Upon binding, ligands can chaperone their protein targets by preventing them from misfolding and aggregating. Thus, an organic molecule that works as folding chaperone for a protein might be its specific ligand, and, similarly, the chaperone potential could represent an alternative readout in a molecular screening campaign toward the identification of new hits. Here we show that small molecules selected for acting as pharmacological chaperones on a misfolded mutant of the Frizzled4 (Fz4) receptor bind and modulate wild-type Fz4, representing what are to our knowledge the first organic ligands of this until-now-undruggable GPCR. The novelty and the advantages of the screening platform, the allosteric binding site addressed by these new ligands and the mechanism they use to modulate Fz4 suggest new avenues for development of inhibitors of the Wnt-ß-catenin pathway and for drug discovery.


Assuntos
Receptores Frizzled/química , Chaperonas Moleculares/química , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Glicerol/química , Células HEK293 , Células HeLa , Humanos , Ligantes , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/química
5.
J Membr Biol ; 247(11): 1149-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086772

RESUMO

The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Receptores Frizzled/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA