Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417707

RESUMO

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Assuntos
Interneurônios , Células Piramidais , Dendritos/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Tálamo
2.
Curr Opin Neurobiol ; 66: 125-134, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186879

RESUMO

Functioning of the neocortex relies on a complex architecture of circuits, as illustrated by the causal link between neocortical excitation/inhibition imbalance and the etiology of several neurodevelopmental disorders. An important entry point to cortical circuits is located in the superficial layer 1 (L1), which contains mostly local and long-range inputs and sparse inhibitory interneurons that collectively regulate cerebral functions. While increasing evidence indicates that L1 has important physiological roles, our understanding of how it wires up during development remains limited. Here, we provide an integrated overview of L1 anatomy, function and development, with a focus on transient early born Cajal-Retzius neurons, and highlight open questions key for progressing our understanding of this essential yet understudied layer of the cerebral cortex.


Assuntos
Neocórtex , Interneurônios , Neurônios
3.
Elife ; 82019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31891351

RESUMO

Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.


Assuntos
Apoptose/genética , Neurogênese/genética , Células Piramidais/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Animais Recém-Nascidos , Polaridade Celular/genética , Córtex Cerebral/metabolismo , Estimulação Elétrica , Células Intersticiais de Cajal/metabolismo , Camundongos , Proteínas Mutantes/genética , Células Piramidais/patologia
4.
Nat Commun ; 7: 12896, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694812

RESUMO

The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.


Assuntos
Axônios/metabolismo , AMP Cíclico/metabolismo , Efrina-A1/metabolismo , Microdomínios da Membrana/química , Retina/citologia , Retina/embriologia , Animais , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células Ganglionares da Retina/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA