Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(3): 434-445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185810

RESUMO

Sensory deprivation, especially hearing loss (HL), offers a valuable model for studying neuroplasticity in the human brain and adaptive behaviours that support the daily lives of those with limited or absent sensory input. The study of olfactory function is particularly important as it is an understudied aspect of sensory deprivation. This study aimed to compare the effects of congenital HL on olfactory capacity by using psychophysical tasks. Methodological concerns from previous studies regarding the onset of HL and cognitive assessments were addressed. We recruited 11 individuals with severe-to-profound sensorineural HL (SNHL) since birth and 11 age- and sex-matched typical hearing non-signers. We used standardized neuropsychological tests to assess typical cognition among participants with SNHL. We evaluated olfactory functions by assessing olfactory detection threshold, odour discrimination and odour identification. Hearing-impaired participants outperformed their typical hearing counterparts in olfactory tasks. We further evaluated the accuracy and response time in identifying and localizing odours to disentangle olfactory sensitivity from trigeminal system sensitivity. Participants with SNHL demonstrated higher sensitivity to both the identification and localization tasks. These findings suggest that congenital SNHL is associated with enhanced higher-level olfactory processing and increased trigeminal sensitivity.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Percepção Olfatória , Humanos , Olfato/fisiologia , Odorantes , Percepção
2.
Front Neurosci ; 14: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292323

RESUMO

Background: Auditory deprivation alters cortical and subcortical brain regions, primarily linked to auditory and language processing, resulting in behavioral consequences. Neuroimaging studies have reported various degrees of structural changes, yet multiple variables in deafness profiles need to be considered for proper interpretation of results. To date, many inconsistencies are reported in the gray and white matter alterations following early profound deafness. The purpose of this study was to provide the first systematic review synthesizing gray and white matter changes in deaf individuals. Methods: We conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in 27 studies comprising 626 deaf individuals. Results: Evidence shows that auditory deprivation significantly alters the white matter across the primary and secondary auditory cortices. The most consistent alteration across studies was in the bilateral superior temporal gyri. Furthermore, reductions in the fractional anisotropy of white matter fibers comprising in inferior fronto-occipital fasciculus, the superior longitudinal fasciculus, and the subcortical auditory pathway are reported. The reviewed studies also suggest that gray and white matter integrity is sensitive to early sign language acquisition, attenuating the effect of auditory deprivation on neurocognitive development. Conclusions: These findings suggest that understanding cortical reorganization through gray and white matter changes in auditory and non-auditory areas is an important factor in the development of auditory rehabilitation strategies in the deaf population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA