Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438581

RESUMO

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Assuntos
Neurônios GABAérgicos , Hiperalgesia , Camundongos Endogâmicos C57BL , Receptores Nicotínicos , Animais , Receptores Nicotínicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Camundongos , Parte Reticular da Substância Negra/metabolismo , Parte Reticular da Substância Negra/efeitos dos fármacos , Nicotina/farmacologia , Analgésicos/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Capsaicina/farmacologia , Acetilcolina/metabolismo , Optogenética , Limiar da Dor/efeitos dos fármacos
2.
Acta Pharmacol Sin ; 43(4): 862-875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34244603

RESUMO

The nigrostriatal dopaminergic (DA) system, which includes DA neurons in the ventral and dorsal tiers of the substantia nigra pars compacta (vSNc, dSNc) and DA terminals in the dorsal striatum, is critically implicated in motor control. Accumulating studies demonstrate that both the nigrostriatal DA system and motor function are impaired in aged subjects. However, it is unknown whether dSNc and vSNc DA neurons and striatal DA terminals age in similar patterns, and whether these changes parallel motor deficits. To address this, we performed ex vivo patch-clamp recordings in dSNc and vSNc DA neurons, measured striatal dopamine release, and analyzed motor behaviors in rodents. Spontaneous firing in dSNc and vSNc DA neurons and depolarization-evoked firing in dSNc DA neurons showed inverse V-shaped changes with age. But depolarization-evoked firing in vSNc DA neurons increased with age. In the dorsal striatum, dopamine release declined with age. In locomotor tests, 12-month-old rodents showed hyperactive exploration, relative to 6- and 24-month-old rodents. Additionally, aged rodents showed significant deficits in coordination. Elevating dopamine levels with a dopamine transporter inhibitor improved both locomotion and coordination. Therefore, key components in the nigrostriatal DA system exhibit distinct aging patterns and may contribute to age-related alterations in locomotion and coordination.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Corpo Estriado , Humanos , Parte Compacta da Substância Negra , Fenótipo , Substância Negra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA