Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107593, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971093

RESUMO

Nitric oxide (NO) and reactive oxygen species (ROS) embody excellent potential in cancer therapy. However, as a small molecule, their targeted delivery and precise, controllable release are urgently needed to achieve accurate cancer therapy. In this paper, a novel US-responsive bifunctional molecule (SD) and hyaluronic acid-modified MnO2 nanocarrier was developed, and a US-responsive NO and ROS controlled released nanoplatform was constructed. US can trigger SD to release ROS and NO simultaneously at the tumor site. Thus, SD served as acoustic sensitizer for sonodynamic therapy and NO donor for gas therapy. In the tumor microenvironment, the MnO2 nanocarrier can effectively deplete the highly expressed GSH, and the released Mn2+ can make H2O2 to produce .OH by Fenton-like reaction, which exhibited a strong chemodynamic effect. The high concentration of ROS and NO in cancer cell can induce cancer cell apoptosis ultimately. In addition, toxic ONOO-, which was generated by the reaction of NO and ROS, can effectively cause mitochondrial dysfunction, which induced the apoptosis of tumor cells. The 131I was labeled on the nanoplatform, which exhibited internal radiation therapy for tumor therapy. In -vitro and -vivo experiments showed that the nanoplatform has enhanced biocompatibility, and efficient anti-tumor potential, and it achieves synergistic sonodynamic/NO/chemodynamic/radionuclide therapy for cancer.


Assuntos
Radioisótopos do Iodo , Compostos de Manganês , Óxido Nítrico , Óxidos , Espécies Reativas de Oxigênio , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Óxidos/química , Óxidos/farmacologia , Radioisótopos do Iodo/química , Apoptose/efeitos dos fármacos , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Camundongos Endogâmicos BALB C , Terapia por Ultrassom , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ondas Ultrassônicas , Linhagem Celular Tumoral
2.
Hortic Res ; 11(6): uhae121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919561

RESUMO

Root-associated microbiomes play a crucial role in plant responses to biotic and abiotic stresses. Plants can enrich beneficial microbes to increase their stress-relieving ability. Above-ground insect herbivory is among the most detrimental stresses for plants, especially to crop production. However, few studies have explored how root-associated microbiomes respond to herbivores and influence plant-defense functions under herbivory stress. We investigate the changes and functional role of root-associated microbial communities under herbivory stress using leafminer (Liriomyza trifolii) and cowpea (Vigna unguiculata) as a focal system. We did this by using a combination of 16S ribosomal RNA gene profiling and metagenomic sequencing to test for differences in co-occurrence networks and functions between cowpea plants infested and noninfested with leafminers. The results demonstrated that leafminer infestation caused a shift in the rhizosphere microbiome, which was characterized by a significant variation in microbiome community structure and composition, the selection of hub microbes involved in nitrogen (N) metabolism, and functional enrichment related to N metabolism. Notably, nitrogen-fixing bacteria Bradyrhizobium species were actively enriched and selected to be hubs in the rhizosphere. Inoculation with Bradyrhizobium enhanced cowpea performance under leafminer stress and increased protease inhibitor levels to decrease leafminer fitness. Overall, our study characterized the changes of root-associated microbiota between leafminer-infested and noninfested cowpea plants and revealed the mechanisms underlying the rhizosphere microbiome shift that enhance plant performance and defense against herbivory. Our findings provide further support for the notion that plants enrich rhizosphere microbes to counteract aboveground insect herbivores.

3.
Plants (Basel) ; 12(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005760

RESUMO

The thrip (Megalurothrips usitatus) damages the flowers and pods of the cowpea, causing "black-heads and black-tails" (BHBT) symptoms and negatively affecting its economic value. However, the mechanism by which BHBT symptoms develop is still unknown. Our results showed that the microstructure of the pod epidermis was altered and the content of the plant's resistance-related compounds increased after a thrip infestation. However, the contents of protein and free amino acids did not change significantly, suggesting that the nutritional value was not altered. Pathogens were found not to be involved in the formation of BHBT symptoms, as fungi and pathogenic bacteria were not enriched in damaged pods. Two herbivory-induced flavonoids-7,4'-dihydroxyflavone and coumestrol-were found to exert insecticidal activity. Our study clarified that BHBT symptoms are directly caused by the thrip. Thresholds for pest control need to be reconsidered as thrip herbivory did not degrade cowpea nutrition.

4.
Food Chem (Oxf) ; 6: 100173, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37284067

RESUMO

Linalool and its derivatives contribute greatly to tea aroma. Here, 8-hydroxylinalool was found to be one of the major linalool-derived aroma compounds in Camellia sinensis var. assamica 'Hainan dayezhong', a tea plant grown in Hainan Province, China. Both (Z)-8-hydroxylinalool and (E)-8-hydroxylinalool were detected, and the E type was the main compound. Its content fluctuated in different months and was the highest in the buds compared with other tissues. CsCYP76B1 and CsCYP76T1, located in the endoplasmic reticulum, were identified to catalyze the formation of 8-hydroxylinalool from linalool in the tea plant. During withering of black tea manufacturing, the content of both (Z)-8-hydroxylinalool and (E)-8-hydroxylinalool significantly increased. Further study suggested that jasmonate induced gene expression of CsCYP76B1 and CsCYP76T1, and the accumulated precursor linalool may also contribute to 8-hydroxylinalool accumulation. Thus, this study not only reveals 8-hydroxylinalool biosynthesis in tea plants but also sheds light on aroma formation in black tea.

6.
Plant Dis ; 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34161126

RESUMO

Hybrid bermudagrass (Cynodon dactylon×C. transvaalensis) is widely used as turf in transition zone of China. Spring dead spot (SDS) is one of the most damaging diseases of hybrid bermudagrass. Symptoms of SDS appear when hybrid bermudagrass starts to break dormancy with warm temperature in early spring. The symptoms show sunken, circular or irregularly shaped, straw-colored patches, with 20 to 100 cm in diameter. The patches maintain dormant as the surrounding uninfected turfgrass resumes growth and turns green. SDS pathogens are soilborne fungi that colonize roots, stolons and rhizomes, infected roots or rhizomes become black and eventually collapse. Three species of fungi are reported to cause SDS: Ophiosphaerella herpotricha (Fr) J. Walker; O. korrae (J. Walker & A.M. Smith) Shoemaker & C.E. Babcock; or O. narmari (J. Walker & A.M. Smith) Wetzel, Hubert & Tisserat (Walker and Smith 1972; Walker 1980; Shoemaker and Babcock 1989; Wetzel et al. 1999). However, distribution of the three species may vary by geographical region (Cottrill et al. 2016). In October 2020, symptoms of SDS were observed on hybrid bermudagrass fairways of Taihu golf course in Wuxi, Jiangsu province. Root samples of SDS were collected, symptomatic roots with 3-4 cm length were cut, washed 2-3 times, surface sterilized in 0.6% NaOCl for 5 min, rinsed and blotted dry for 2 min and placed on potato dextrose agar (PDA) amended with 50 mg L-1 each of ampicillin, streptomycin sulfate and tetracycline. Plates were incubated in the dark at 25℃ for 5-7 days, Hyphae growing from the roots were transferred to new PDA plates. A total of 7 fungal isolates with morphology similar to SDS pathogens were obtained (Tredway et al. 2009). The genomic DNA was extracted from 2 of them (7-41, 8-6) and amplified with universal primers ITS5 and ITS4 (White et al. 1990). PCR products were sequenced (deposited as MW536995 and MW536994 in GenBank, not available yet) and showed 99.79% similarity to O. narmari (KP690979). Pathogenicity tests were performed on 'Tifdwarf' hybrid bermudagrass (9-week-old in 5 × 20 cm Cone-Tainers containing a sand and nutrition substrate mixture). Eight oat seeds infested with O. narmari were inserted 5 cm below the soil surface in the root zone of hybrid bermudagrass. The inoculated turfgrass grew for five weeks in the growth chamber with a 12-h day/night cycle of 25/20°C and 90% relative humidity. A control treatment was inoculated with 8 noninfested sterile oat seeds, and each treatment was replicated 3 times. The root tissues of hybrid burmudagrass inoculated with O. narmari became black and necrotic, no symptoms were observed on the roots of noninfested plants. O. narmari was consistently reisolated from symptomatic roots, and confirmed by PCR as mentioned above. To the best of our knowledge, this is the first report of O. narmari caused spring dead spot in the transition zone of China. The identification of SDS caused by O. narmari will have important implications for the management of this root-rot species on hybrid bermudagrass.

7.
Pestic Biochem Physiol ; 156: 123-128, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027571

RESUMO

Sclerotinia homoeocarpa causes dollar spot disease on turfgrass and is a serious problem on many species worldwide. Fludioxonil, a phenylpyrrole fungicide, is not currently registered for dollar spot control in China. In this study, the baseline sensitivity to fludioxonil was established using an in vitro assay for 105 isolates of S. homoeocarpa collected from 10 locations in different regions of China. Results indicate that the frequency distribution of effective concentration for 50% inhibition of mycelial growth (EC50) values of the S. homoeocarpa isolates was unimodal (W = 0.9847, P = .2730). The mean EC50 value was 0.0020 ±â€¯0.0006 µg/ml with a range from 0.0003 to 0.0035 µg/ml. A total of 7 fludioxonil-resistant mutants were obtained in laboratory, the mutants were stable in fludioxonil sensitivity after the 10th transfer, with resistance factor (RF) ranging from 4.320 to >13,901.4. The mutants showed a positive cross-resistance between fludioxonil and the dicarboximide fungicide iprodione, but not propiconazole, fluazinam, and thiophanate-methyl. When mycelial growth rate, pathogenicity and osmotic sensitivity were assessed, the mutants decreased in the fitness compared with their parental isolates. Sequence alignment of the histidine kinase gene Shos1 revealed a 13-bp fragment deletion only in one mutant, no mutations were observed on Shos1 in the rest resistant mutants.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Dioxóis/farmacologia , Fungicidas Industriais/farmacologia , Pirróis/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Aminopiridinas/farmacologia , Ascomicetos/genética , China , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Hidantoínas/farmacologia , Mutação/genética , Tiofanato/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA