RESUMO
The ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle resupply to enable fast and sustained release rates. However, the molecular mechanisms of these physiological activities remain unelucidated. Previous studies showed that the RAB-specific GTPase-activating protein TBC1D24 controls the endosomal trafficking of the synaptic vesicles (SVs) in Drosophila and mammalian neurons, and mutations in TBC1D24 may lead to non-syndromic hearing loss or hearing loss associated with the DOORS syndrome in humans. In this study, we generated a knock-in mouse model for the p. S178L mutation in TBC1D24, which leads to autosomal dominant non-syndromic hearing loss (DFNA65). The p.S178L mutant mice show mild hearing loss and progressively declined wave I amplitude of the auditory brainstem responses. Despite the normal gross and cellular morphology of the cochlea, transmission electron microscopy reveals accumulation of endosome-like vacuoles and a lower-than-normal number of SVs directly associated with the ribbons in the IHCs. Consistently, patch clamp of the IHCs shows reduced exocytosis under prolonged stimulus. ARF6, a TBC1D24-interacting protein also involved in endosomal membrane trafficking, was underexpressed in the cochleae of the mutant mouse and has weakened in vitro interaction with the p.S178L mutant TBC1D24. Our results suggest an important role of TBC1D24 in maintaining endosomal-mediated vesicle recycling and sustained exocytosis of hair cell ribbon synapses.
RESUMO
Afferent synapses between inner hair cells (IHCs) and the type I spiral ganglion neurons (SGNs) in the cochlea provide over 95% of sensory signals for auditory perception in the brain. However, these afferent synapses are particularly vulnerable to damage, for example from excitotoxicity, and exposure to noise in the environment which often leads to noise-induced cochlear synaptopathy (NICS). In this study, we simulated excitotoxic trauma by incubating kainic acid, a non-desensitizing agonist for AMPA type glutamate receptors on cultured cochleae. The possible protective effects of amitriptyline against NICS were examined. We found that, in IHCs, amitriptyline reversed the decrease of Ca2+ current and exocytosis caused by excitotoxic trauma. In SGNs, amitriptyline promoted the recovery of neurite loss caused by excitotoxic trauma. Furthermore, we found that the protective effects of amitriptyline are likely mediated by suppressing apoptosis factors that were upregulated during excitotoxic trauma. In conclusion, our results suggest that amitriptyline could protect afferent synapses in the cochlea from NICS, making it a potential drug candidate for hearing protection.
Assuntos
Amitriptilina , Cóclea , Ácido Caínico , Gânglio Espiral da Cóclea , Sinapses , Animais , Amitriptilina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Ácido Caínico/farmacologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Internas/metabolismo , Células Cultivadas , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Exocitose/efeitos dos fármacosRESUMO
A prevalent recessive mutation (c.2485C>T, p.Q829X) within the OTOF gene leads to profound prelingual hearing loss. Here we show that in Otof mice harbouring a mutation (c.2482C>T, p.Q828X) homozygous to human OTOF that faithfully mimics the hearing-loss phenotype, a base editor (consisting of the deaminase ABE7.10max and the Cas9 variant SpCas9-NG) packaged in adeno-associated viruses and injected into the inner ear of the mice via the round-window membrane effectively corrected the pathogenic mutation, with no apparent off-target effects. The treatment restored the levels of the otoferlin protein in 88% of the inner hair cells and stably rescued the auditory function of the mice to near-wild-type levels for over 1.5 years while improving synaptic exocytosis in the inner hair cells. We also show that an adenine base editor that targets the prevalent human OTOF mutation restored hearing in humanized mice to levels comparable to those of the wild-type counterparts. Base editors may be effective for the treatment of hereditary deafness.
RESUMO
BACKGROUND: Wolbachia symbiosis in Aedes aegypti is an emerging biocontrol measure against dengue. However, assessing its real-world efficacy is challenging due to the non-randomised, field-based nature of most intervention studies. This research re-evaluates the spatial-temporal impact of Wolbachia interventions on dengue incidence using a large battery of quasi-experimental methods and assesses each method's validity. METHODS: A systematic search for Wolbachia intervention data was conducted via PUBMED. Efficacy was reassessed using commonly-used quasi-experimental approaches with extensive robustness checks, including geospatial placebo tests and a simulation study. Intervention efficacies across multiple study sites were computed using high-resolution aggregations to examine heterogeneities across sites and study periods. We further designed a stochastic simulation framework to assess the methods' ability to estimate intervention efficacies (IE). RESULTS: Wolbachia interventions in Singapore, Malaysia, and Brazil significantly decreased dengue incidence, with reductions ranging from 48.17% to 69.19%. IEs varied with location and duration. Malaysia showed increasing efficacy over time, while Brazil exhibited initial success with subsequent decline, hinting at operational challenges. Singapore's strategy was highly effective despite partial saturation. Simulations identified Synthetic Control Methods (SCM) and its variant, count Synthetic Control Method (cSCM), as superior in precision, with the smallest percentage errors in efficacy estimation. These methods also demonstrated robustness in placebo tests. CONCLUSIONS: Wolbachia interventions exhibit consistent protective effects against dengue. SCM and cSCM provided the most precise and robust estimates of IEs, validated across simulated and real-world settings.
Assuntos
Aedes , Dengue , Wolbachia , Wolbachia/fisiologia , Dengue/prevenção & controle , Dengue/epidemiologia , Animais , Aedes/microbiologia , Aedes/virologia , Humanos , Brasil/epidemiologia , Singapura/epidemiologia , Malásia/epidemiologia , Incidência , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Simbiose , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/estatística & dados numéricosRESUMO
Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) are multifunctional materials that are promising for solid-state refrigeration applications based on the magnetocaloric effect (MCE) and elastocaloric effect (eCE). However, a combination of excellent multi-caloric properties, suitable operating temperatures, and mechanical properties cannot be well achieved in these materials, posing a challenge for their practical application. In this work, we systematically study the phase transformations and magnetic properties of Ni50-xMn38Sn12Cux (x = 0, 2, 3, 4, 5, and 6) and Ni50-yMn38Sn12Fey (y = 0, 1, 2, 3, 4, and 5) alloys, and the magnetic-structural phase diagrams of these alloy systems are reported. The influences of the fourth-element doping on the phase transitions and magnetic properties of the alloys are elucidated by first-principles calculations. This work demonstrates that the fourth-element doping of Ni-Mn-Sn-based FSMA is effective in developing multicaloric refrigerants for practical solid-state refrigeration.
RESUMO
Plant communities may be co-invaded by invasive plants, sometimes even by congeneric invasive plants (CIPs). Despite the growing understanding of co-invasion in the environment, little is known about how CIP interactions and mechanisms regulate co-invasion. Darwin's naturalisation conundrum predicts that the coexistence of closely related species is difficult due to their structural and behavioural similarities. Nevertheless, communities containing closely related species are more susceptible to being invaded because close relatives may favour similar environments; therefore, this hypothesis should be followed in the co-invasion of CIPs. To explore whether the phylogenetic relatedness and origins of invasive species to CIPs can promote or hinder co-invasion, we conducted a controlled interaction and soil-legacy greenhouse experiment to quantify the growth response of invasive plants and their congeners. We consistently found that CIPs of identical origin were more likely to co-invade compared to CIPs of distinct origins. CIPs of distinct origins exhibited an antagonistic effect on co-invasion by allelopathy. Invasive plant-conditioned soil was more conducive to the growth of CIPs of identical origin than CIPs of distinct origins. Our results revealed the different effects of invader-invader phylogenetic relatedness on co-invader success and impact, suggesting the operation of different mechanisms across co-invasion.
RESUMO
Rechargeable lithium-ion batteries are integral to contemporary energy storage, yet current anode material systems struggle to meet the increasing demand for extended range capabilities. This work introduces a novel composite anode material composed of one-dimensional 2H-phase tin disulfide (SnS2) nanoribbons enclosed within cavities of single-walled carbon nanotubes (SnS2@SWCNTs), achieved through precise atomic engineering. Employing aberration-corrected transmission electron microscopy, we precisely elucidated the crystal structure of SnS2 within the confines of the SWCNTs. This deliberate design effectively addresses the inherent limitations of SnS2 as a lithium-ion anode material, including its low electrical conductivity, considerable volume expansion effects, and unstable solid electrolyte interface membrane. Testing confirmed that SnS2 transforms into the Li5Sn2 alloy phase after full lithiation and back to SnS2 after delithiation, showing excellent reversibility. The composite also benefits from edge effects, improving lithium storage through stronger binding and lower migration barriers, which were supported by calculations. This pioneering work advances high-performance anode materials for applications.
RESUMO
Nacre-inspired metal matrix composites have received much attention due to their excellent deformation coordination ability, which can achieve the synergy of strength and ductility. The preparation of nacre-like Al matrix composites by freeze casting has been a promising application, but the continuous ceramic-rich layer affects the corrosion resistance of the composites, facing complex corrosion problems during service. In this work, the microstructure and corrosion behavior of the nacre-inspired (TiBw-TiB2)/Al composites fabricated by freeze casting and squeeze casting were systematically studied. The results indicated that the Al layers and ceramic-rich layers had little change, about 35 µm and 31 µm, respectively, with an increasing ratio of the Ti/TiB2. Meanwhile, a high Ti/TiB2 ratio resulted in an increase in the Fe-Ti intermetallic phases, which was detrimental to the corrosion performance of the composites and was prone to pitting. The electrochemical test results showed that the 3Ti7TiB2 composite had the lowest corrosion current density (15.9 µA) and intergranular corrosion depth (231 µm), indicating that it had the best corrosion resistance, which can be attributable to its stable and dense passivation film. Two different corrosion phenomena during the intergranular corrosion test existed in the present nacre-inspired (TiBw-TiB2)/Al composites: intergranular corrosion in the Al matrix layer and pitting corrosion in the ceramic-rich layer. Among all the composites, the corrosion depth of the 3Ti7TiB2 composite was the smallest and significantly less than that of the 2024Al alloy. In addition, the continuous ceramic-rich layer acted as a corrosion channel during corrosion, significantly degrading the corrosion resistance of the nacre-like Al composites.
RESUMO
The invasive vine Sicyos angulatus L. destroys the natural ecosystem of invaded areas. Understanding the differences in growth and development between S. angulatus and other plants is necessary to explore the invasion mechanisms of S. angulatus and implement appropriate prevention and control measures. Thus, this study compared the growth, photosynthesis, and root characteristics of invasive liana S. angulatus and other three vine plants, Ipomoea nil (L.) Roth, Ipomoea purpurea (L.), and Thladiantha dubia Bunge, at different growth stages: seedling, flowering, and fruiting. The results showed that the total biomass of S. angulatus in the fruiting stage was 3-6 times that of the other three plants, and the root biomass ratio and root-shoot ratio decreased throughout the growth stage. Throughout the growth stage, the total leaf area of S. angulatus was significantly higher than that of the other three plant types, and the specific leaf area of S. angulatus at the seedling and flowering stages was 2.5-3 and 1.4-3 times that of the other three plants, respectively. The photosynthetic rate, stomatal conductance, and transpiration rate of S. angulatus at the fruiting stage were significantly higher than those of the other three plants, and its water use efficiency was higher than that of the other three plants at the three growth stages, indicating its strong photosynthetic capacity. The root activity and root pressure of S. angulatus were also significantly higher than those of the other three plants at the seedling and flowering stages. These results show that S. angulatus flexibly allocates resources to its aboveground parts during the growth stage to ensure that the plant obtains the space necessary for its growth and development and that with the help of higher root pressure and root activity, S. angulatus can maintain higher photosynthesis and water use efficiency with fewer resources. Therefore, the prevention and control of S. angulatus requires a combination of aboveground and underground measures. Spraying conventional weedicide/herbicide and manually removing aboveground plants may lead to its resurgence.
RESUMO
Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1â h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100â µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7â mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50â µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100â µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.
Assuntos
Núcleo Coclear , Lactatos , Neurônios , Animais , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Lactatos/farmacologia , Núcleo Coclear/efeitos dos fármacos , Núcleo Coclear/fisiologia , Técnicas de Patch-Clamp , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Masculino , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Camundongos Endogâmicos C57BLRESUMO
The distribution of reinforcements and interfacial bonding state with the metal matrix are crucial factors in achieving excellent comprehensive mechanical properties for aluminum (Al) matrix composites. Normally, after heat treatment, graphene nanosheets (GNSs)/Al composites experience a significant loss of strength. Here, better performance of GNS/Al was explored with a hybrid strategy by introducing 0.9 vol.% silicon carbide nanoparticles (SiCnp) into the composite. Pre-ball milling of Al powders and 0.9 vol.% SiCnp gained Al flakes that provided a large dispersion area for 3.0 vol.% GNS during the shift speed ball milling process, leading to uniformly dispersed GNS for both as-sintered and as-extruded (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al. High-temperature heat treatment at 600 °C for 60 min was performed on the as-extruded composite, giving rise to intragranular distribution of SiCnp due to recrystallization and grain growth of the Al matrix. Meanwhile, nanoscale Al4C3, which can act as an additional reinforcing nanoparticle, was generated because of an appropriate interfacial reaction between GNS and Al. The intragranular distribution of both nanoparticles improves the Al matrix continuity of composites and plays a key role in ensuring the plasticity of composites. As a result, the work hardening ability of the heat-treated hybrid (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al composite was well improved, and the tensile elongation increased by 42.7% with little loss of the strength. The present work provides a new strategy in achieving coordination on strength-plasticity of Al matrix composites.
RESUMO
Although covalent organic frameworks (COFs) with high π-conjugation have recently exhibited great prospects in perovskite solar cells (PSCs), their further application in PSCs is still hindered by face-to-face stacking and aggregation issues. Herein, metal-organic framework (MOF-808) is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle, which could effectively inhibit COF stacking and aggregation. The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored. The complementary utilization of π-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects. The resulting PSCs achieve an impressive power conversion efficiency of 23.61% with superior open circuit voltage (1.20 V) and maintained approximately 90% of the original power conversion efficiency after 2000 h (30-50% RH and 25-30 °C). Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles, the amount of lead leakage from unpackaged PSCs soaked in water (< 5 ppm) satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.
RESUMO
Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a "multiple vectors in one AAV" strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof -/- mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.
RESUMO
Recent works have experimentally proven that metal matrix composites (MMCs) with network architecture present improved strength-ductility match. It is envisaged that the performance of architecturally designed composites is particularly sensitive to reinforcement strength. Here, reinforcing particles with various fracture strengths were introduced in numerical models of composites with network particle distribution. The results revealed that a low particle strength (1 GPa) led to early-stage failure and brittle fracture. Nevertheless, a high particle strength (5 GPa) delayed the failure behavior and led to ductile fracture at the SiC/Al-Al macro-interface areas. Therefore, the ultimate tensile strengths (UTS) of the network SiC/Al composites increased from 290 to 385 MPa, with rising particle strength from 1 to 5 GPa. Based on the composite property, different particle fracture threshold strengths existed for homogeneous (~2.7 GPa) and network (~3.7 GPa) composites. The higher threshold strength in network composites was related to the increased stress concentration induced by network architecture. Unfortunately, the real fracture strength of the commercial SiC particle is 1-2 GPa, implying that it is possible to select a high-strength particle necessary for efficient network architecture design.
RESUMO
Solid-state refrigeration based on elastocaloric materials (eCMs) requires reversibility and repeatability. However, the intrinsic intergranular brittleness of ferromagnetic shape memory alloys (FMSMAs) limits fatigue life and, thus, is the crucial bottleneck for its industrial applications. Significant cyclic stability of elastocaloric effects (eCE) via 53% porosity in Ni-Fe-Ga FMSMA has already been proven. Here, Ni-Fe-Ga foams (single-/hierarchical pores) with high porosity of 64% and 73% via tailoring the material's architecture to optimize the eCE performances are studied. A completely reversible superelastic behavior at room temperature (297 K) is demonstrated in high porosity (64-73%) Ni-Fe-Ga foams with small stress hysteresis, which is greatly conducive to durable fatigue life. Consequentially, hierarchical pore foam with 64% porosity exhibits a maximum reversible ∆Tad of 2.0 K at much lower stress of 45 MPa with a large COPmat of 34. Moreover, it shows stable elastocaloric behavior (ΔTad = 2.0 K) over >300 superelastic cycles with no significant deterioration. The enhanced eCE cyclability can be attributed to the pore hierarchies, which remarkably reduce the grain boundary constraints and/or limit the propagation of cracks to induce multiple stress-induced martensitic transformations (MTs). Therefore, this work paves the way for designing durable fatigue life FMSMAs as promising eCMs by manipulating the material architectures.
RESUMO
Adeno-associated viral (AAV) vectors are increasingly used as vehicles for gene delivery to treat hearing loss. However, lack of specificity of the transgene expression may lead to overexpression of the transgene in nontarget tissues. In this study, we evaluated the expression efficiency and specificity of transgene delivered by AAV-PHP.eB under the inner ear sensory cell-specific Myo15 promoter. Compared with the ubiquitous CAG promoter, the Myo15 promoter initiates efficient expression of the GFP fluorescence reporter in hair cells, while minimizing non-specific expression in other cell types of the inner ear and CNS. Furthermore, using the Myo15 promoter, we constructed an AAV-mediated therapeutic system with the coding sequence of OTOF gene. After inner ear injection, we observed apparent hearing recovery in Otof-/- mice, highly efficient expression of exogenous otoferlin, and significant improvement in the exocytosis function of inner hair cells. Overall, our results indicate that gene therapy mediated by the hair cell-specific Myo15 promoter has potential clinical application for the treatment of autosomal recessive deafness and yet for other hereditary hearing loss related to dysfunction of hair cells.
RESUMO
Li-rich layered oxides (LRLOs), with the advantages of high specific capacity and low cost, are considered as candidates for the next-generation cathode of lithium-ion batteries (LIBs). Unfortunately, sluggish kinetics and interfacial degradation lead to capacity loss and voltage decay of the material during cycling. To address these issues, we propose a Ni/Mg dual concentration-gradient modification strategy for LRLOs. From the center to the surface of the modified materials, the contents of Ni and Mg are gradually increased while the content of Mn is decreased. The high Ni content on the surface increases the proportion of cationic redox, elevating the operating voltage and accelerating reaction kinetics. Moreover, the doped Mg on the surface of the material acting as a stabilizing pillar suppresses the migration of transition metals, stabilizing the layered structure. Therefore, the material with the Ni/Mg dual concentration-gradients delivers a superior electrochemical performance, exhibiting a suppressed voltage decay of 2.8 mV per cycle during 200 cycles (1 C, 2-4.8 V) and an excellent rate capability of 94.84 mAh/g at 7C. This study demonstrates a synergic design to construct high-performance LRLO cathode materials for LIBs.
RESUMO
Acquiring a deep insight into the electron transfer mechanism and applications of one-dimensional (1D) van der Waals heterostructures (vdWHs) has always been a significant challenge. Herein, through direct observation using aberration-corrected transmission electron microscopy (AC-TEM), we verify the stable formation of a high-quality 1D heterostructure composed of PbI2@single-walled carbon nanotubes (SWCNTs). The phenomenon of electron transfer between PbI2 and SWCNT is elucidated through spectroscopic investigations, including Raman and X-ray photoelectron spectroscopy (XPS). Electrochemical testing indicates the electron transfer and enduring stability of 1D PbI2 within SWCNTs. Moreover, leveraging the aforementioned electron transfer mechanism, we engineer self-powered photodetectors that exhibit exceptional photocurrent and a 3-order-of-magnitude switching ratio. Subsequently, we reveal its unique electron transfer behavior using Kelvin probe force microscopic (KPFM) tests. According to KPFM, the average surface potential of SWCNTs decreases by 80.6 mV after filling. Theoretical calculations illustrate a charge transfer of 0.02 e per unit cell. This work provides an effective strategy for the in-depth investigation and application of electron transfer in 1D vdWHs.
RESUMO
3D raspberry-like core/satellite nanostructures were prepared by controlled surface functionalization of silica spheres using crosslinked poly(4-vinylpyridine) (P4VP) chains with known binding affinity for gold nanoparticles (AuNPs). The 3D SiO2-g-P(4VP-co-DVB)/AuNP nanoraspberries can be further transformed into 2D plasmonic nanoclusters by etching the silica core with hydrofluoric acid (HF). After the transformation, the interparticle distance between the AuNPs dramatically reduced from a 10 nm scale to sub 2 nm. Owing to the strong electromagnetic field generated by the plasmonic coupling between AuNPs in very close proximity, the established P(4VP-co-DVB)/AuNP nanoclusters provided strong and undisturbed Raman signals as a SERS substrate. In addition, benefiting from the stabilizing effect of the crosslinked P(4VP-co-DVB) network, the prepared SERS substrate has the advantages of good uniformity, stability and reproducibility, as well as strong SERS enhancement, endowing it with great potential for rapid and efficient SERS detection.