Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893863

RESUMO

Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 µs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.

2.
ACS Appl Mater Interfaces ; 15(31): 37640-37648, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491709

RESUMO

As a new-generation photoelectric material, perovskites have attracted researchers' attention due to their excellent optoelectronic properties. However, the existence of defects inevitably causes structural degradation and restricts their performance, which need to be further improved by post-treatment. At present, post-treatments mostly focus on non-contact treatments, which may constrain the effect since the influence on the perovskites caused by the direct contact is much more straightly. Therefore, we proposed an annealing strategy of straight manipulation in a solvent atmosphere with the assistance of polyimide (PI) tape for the perovskite post-treatment, due to the high heat resistance and less glue residual of this tape. It casts an influence on the perovskite directly, proving the possibility of the straight manipulation by operators, promoting the recrystallization of the perovskite grains and removing the impurity substance. The optimized Pb-free perovskite film exhibits a better X-ray sensitivity of 7.5 × 104 µC Gyair-1 cm-2 and a great detection limit of 47 nGyair s-1, which is comparable to advanced Pb-based perovskite X-ray detectors and all commercial ones. The new annealing strategy provides a facile, effective, and simple method to improve the perovskite quality, exhibiting the potential and harmlessness of the direct contact post-treatment, which paves the way for a broader application of perovskites.

3.
Nanoscale Adv ; 5(12): 3131-3145, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325539

RESUMO

In recent years, flexible micro-pressure sensors have been used widely in wearable health monitoring applications due to their excellent flexibility, stretchability, non-invasiveness, comfort wearing and real-time detection. According to the working mechanism of the flexible micro-pressure sensor, it can be classified as piezoresistive, piezoelectric, capacitive and triboelectric types. Herein, an overview of flexible micro-pressure sensors for wearable health monitoring is presented. The physiological signaling and body motions contain a lot of health status information. Thus, this review focuses on the applications of flexible micro-pressure sensors in these fields. Additionally, the contents of sensing mechanism, sensing materials and performance of flexible micro-pressure sensors are introduced in detail. Finally, we predict the future research directions of the flexible micro-pressure sensors, and discuss the challenges in practical applications.

4.
Adv Sci (Weinh) ; 10(23): e2300256, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37232232

RESUMO

Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.

5.
Anal Chem ; 95(8): 4043-4049, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800209

RESUMO

Sensing sensitivity is one of the crucial parameters for quartz crystal microbalance (QCM) sensors. Herein, we study the overtone mass sensitivity of a QCM sensor with an asymmetric N-M type electrode configuration. In order to overcome the deficiency that the sensitivity of the QCM sensor with an asymmetric electrode cannot be calculated by Sauerbrey's equation, we design the electrochemical electrodeposition experiments to measure it. The measurement results of overtone mass sensitivities of three 3.1-5.1 and three 4.1-5.1 QCMs are 5.418, 5.629, and 5.572 Hz/ng and 4.155, 4.456, and 3.982 Hz/ng in the third overtone mode and 9.208, 9.474, and 9.243 Hz/ng and 6.811, 7.604, and 6.588 Hz/ng in the fifth overtone mode, respectively. The overtone mass sensitivities of three 5.1-5.1 QCMs are 3.210, 3.439, and 3.540 Hz/ng in the third overtone mode and 5.396, 5.010, and 5.707 Hz/ng in the fifth overtone mode, respectively. These results show that the overtone mass sensitivity of the N-M type QCM is larger than that of QCMs with symmetric electrodes, and the fifth overtone mass sensitivity is higher than the third overtone mass sensitivity for the same type of QCM. The above results strongly confirm that the overtone mass sensitivity of a QCM sensor with an asymmetric N-M electrode structure significantly enhances its sensing performance, and it will greatly meet the demands for high precision measurement of QCM sensors in applications.

6.
ACS Nano ; 16(7): 10199-10208, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35622531

RESUMO

Pb-free perovskite material is considered to be a promising material utilized in next-generation X-ray detectors due to its high X-ray absorption coefficient, decent carrier transport properties, and relatively low toxicity. However, the pixelation of the perovskite material with an industry-level photolithography processing method remains challenging due to its poor structural stability. Herein, we use Cs2AgBiBr6 perovskite material as the prototype and investigate its interaction with photolithographic polar solvents. Inspired by that, we propose a wafer-scale photolithography patterning method, where the pixeled perovskite array devices for X-ray detection are successfully prepared. The devices based on pixeled Pb-free perovskite material show a high detection sensitivity up to 19118 ± 763 µC Gyair-1 cm-2, which is comparable to devices with Pb-based perovskite materials and superior to the detection sensitivity (∼20 µC Gyair-1 cm-2) of the commercial a-Se detector. After pixelation, the devices achieve an improved spatial resolution capacity with the spatial frequency from 2.7 to 7.8 lp mm-1 at modulation-transfer-function (MTF) = 0.2. Thus, this work may contribute to the development of high-performance array X-ray detectors based on Cs2AgBiBr6 perovskite material.

7.
Anal Chem ; 94(15): 5760-5768, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35377148

RESUMO

With the in-depth application of quartz crystal microbalance (QCM) sensors in the fields of science and engineering, there is an urgent need for QCM sensors with high mass sensitivity. The mass sensitivity of a QCM is closely related to its resonance frequency, and the high resonance frequency leads to improve its mass sensitivity. However, the resonance frequency of a QCM resonator cannot be increased all the time due to the fragility of quartz wafer and the limits of energy trapping effect. Few studies are associated with mass sensitivity of a QCM resonator under overtone modes. Herein, we propose to make a QCM resonator work in its n-th overtone (n = 3, 5, 7, 9 in this study) mode to increase its resonance frequency during operating. Thereby, the purpose of improving QCM mass sensitivity is achieved, and the mass sensitivity of a QCM working in the n-th overtone mode can be called as n-th overtone mass sensitivity. Then, the n-th overtone mass sensitivity of a QCM sensor is measured by an electrodeposition method. The experimental results show that the n-th overtone mass sensitivity of a QCM is a bit more than n times that of the fundamental mass sensitivity, and it is consistent with the theoretical calculation results. The application of overtone mass sensitivity will greatly improve the sensitivity of QCM sensors, which is very attractive for the research fields that require QCM sensors with high sensitivity.


Assuntos
Galvanoplastia , Técnicas de Microbalança de Cristal de Quartzo , Quartzo
8.
Sci Adv ; 8(13): eabn2156, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353573

RESUMO

We report an artificial eardrum using an acoustic sensor based on two-dimensional MXene (Ti3C2Tx), which mimics the function of a human eardrum for realizing voice detection and recognition. Using MXene with a large interlayer distance and micropyramid polydimethylsiloxane arrays can enable a two-stage amplification of pressure and acoustic sensing. The MXene artificial eardrum shows an extremely high sensitivity of 62 kPa-1 and a very low detection limit of 0.1 Pa. Notably, benefiting from the ultrasensitive MXene eardrum, the machine-learning algorithm for real-time voice classification can be realized with high accuracy. The 280 voice signals are successfully classified for seven categories, and a high accuracy of 96.4 and 95% can be achieved by the training dataset and the test dataset, respectively. The current results indicate that the MXene artificial intelligent eardrum shows great potential for applications in wearable acoustical health care devices.

9.
Nanomicro Lett ; 14(1): 64, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35199258

RESUMO

As a new generation of Zn-ion storage systems, Zn-ion hybrid supercapacitors (ZHSCs) garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors. ZHSCs have excellent integration of high energy density and power density, which seamlessly bridges the gap between batteries and supercapacitors, becoming one of the most viable future options for large-scale equipment and portable electronic devices. However, the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses. Herein, this review will be prudently organized from the perspectives of design strategies, electrode configurations, energy storage mechanisms, recent advances in electrode materials, electrolyte behaviors and further applications (micro or flexible devices) of ZHSCs. The synthesis processes and electrochemical properties of well-designed Zn anodes, capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed. Finally, a brief summary and outlook for the further development of ZHSCs are presented as well. This review will provide timely access for researchers to the recent works regarding ZHSCs.

10.
ACS Nano ; 14(3): 2860-2868, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32027117

RESUMO

Single-crystal (SC) perovskite is currently a promising material due to its high quantum efficiency and long diffusion length. However, the reported perovskite photodetection range (<800 nm) and response time (>10 µs) are still limited. Here, to promote the development of perovskite-integrated optoelectronic devices, this work demonstrates wider photodetection range and shorter response time perovskite photodetector by integrating the SC CH3NH3PbBr3 (MAPbBr3) perovskite on silicon (Si). The Si/MAPbBr3 heterojunction photodetector with an improved interface exhibits high-speed, broad-spectrum, and long-term stability performances. To the best of our knowledge, the measured detectable spectrum (405-1064 nm) largely expands the widest response range reported in previous perovskite-based photodetectors. In addition, the rise time is as fast as 520 ns, which is comparable to that of commercial germanium photodetectors. Moreover, the Si/MAPbBr3 device can maintain excellent photocurrent performance for up to 3 months. Furthermore, typical gray scale face imaging is realized by scanning the Si/MAPbBr3 single-pixel photodetector. This work using an ultrafast photodetector by directly integrating perovskite on Si can promote advances in next-generation integrated optoelectronic technology.

11.
ACS Nano ; 13(11): 12613-12620, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31525030

RESUMO

MXenes have attracted great attention for their potential applications in electrochemical and electronic devices due to their excellent characteristics. Traditional sound sources based on the thermoacoustic effect demonstrated that a conductor needs to have an extremely low heat capacity and high thermal conductivity. Hence, a thin MXene film with a low heat capacity per unit area (HCPUA) and special layered structure is emerging as a promising candidate to build loudspeakers. However, the use of MXenes in a sound source device has not been explored. Herein, we have successfully prepared sound source devices on an anodic aluminum oxide (AAO) and a flexible polyimide (PI) substrates by using the prepared Ti3C2 MXene nanoflakes. Due to the larger interlayer distance of MXene, the MXene-based sound source device has a higher sound pressure level (SPL) than that of graphene of the same thickness. High-quality Ti3C2 MXene nanoflakes were fabricated by selectively etching the Ti3AlC2 powder. The as-fabricated MXene sound source device on an AAO substrate exhibits a higher SPL of 68.2 dB (f = 15 kHz) and has a very stable sound spectrum output with frequency varying from 100 Hz to 20 kHz. A theoretical model has been built to explain the mechanism of the sound source device on an AAO substrate, matching well with the experimental results. Furthermore, the MXene sound source device based on a flexible PI substrate has been attached to the arms, back of the hand, and fingers, indicating an excellent acoustic wearability. Then, the MXene film is packaged successfully into a commercial earphone case and shows an excellent performance at high frequencies, which is very suitable for human audio equipment.

12.
iScience ; 7: 110-119, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267673

RESUMO

Organometal trihalide perovskites (OTPs) are promising optoelectronic materials for high-performance photodetectors. However, up to now, traditional polycrystal OTP-based photodetectors have demonstrated limited effective photo-sensing range. Recently, bulk perovskite single crystals have been seen to have the potential for position-sensitive photodetection. Herein, for the first time, we demonstrate a position-dependent photodetector based on perovskite single crystals by scanning a focused laser beam over the device perpendicular to the channel. The photodetector shows the best-ever effective photo-sensing distance up to the millimeter range. The photoresponsivity and photocurrent decrease by nearly an order of magnitude when the beam position varies from 0 to 950 µm and the tunability of carrier diffusion length in CH3NH2PbBr3 with the variation of the exciting laser intensity is demonstrated. Furthermore, a numerical model based on transport of photoexcited carriers is proposed to explain the position dependence. This photodetector shows excellent potential for application in future nanoelectronics and optoelectronics systems.

13.
ACS Nano ; 12(9): 8839-8846, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30040381

RESUMO

Due to its excellent flexibility, graphene has an important application prospect in epidermal electronic sensors. However, there are drawbacks in current devices, such as sensitivity, range, lamination, and artistry. In this work, we have demonstrated a multilayer graphene epidermal electronic skin based on laser scribing graphene, whose patterns are programmable. A process has been developed to remove the unreduced graphene oxide. This method makes the epidermal electronic skin not only transferable to butterflies, human bodies, and any other objects inseparably and elegantly, merely with the assistance of water, but also have better sensitivity and stability. Therefore, pattern electronic skin could attach to every object like artwork. When packed in Ecoflex, electronic skin exhibits excellent performance, including ultrahigh sensitivity (gauge factor up to 673), large strain range (as high as 10%), and long-term stability. Therefore, many subtle physiological signals can be detected based on epidermal electronic skin with a single graphene line. Electronic skin with multiple graphene lines is employed to detect large-range human motion. To provide a deeper understanding of the resistance variation mechanism, a physical model is established to explain the relationship between the crack directions and electrical characteristics. These results show that graphene epidermal electronic skin has huge potential in health care and intelligent systems.


Assuntos
Grafite/química , Dispositivos Eletrônicos Vestíveis , Humanos , Lasers , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA