RESUMO
This study addresses well-known shortcomings of poly(ethylene glycol) (PEG)-based conjugates. PEGylation is by far the most common method employed to overcome immunogenicity and suboptimal pharmacokinetics of, for example, therapeutic proteins but has significant drawbacks. First, PEG offers no protection from denaturation during lyophilization, storage, or oxidation (e.g., by biological oxidants, reactive oxygen species); second, PEG's inherent immunogenicity, leading to hypersensitivity and accelerated blood clearance (ABC), is a growing concern. We have here developed an 'active-stealth' polymer, poly(thioglycidyl glycerol)(PTGG), which in human plasma is less immunogenic than PEG (35% less complement activation) and features a reactive oxygen species-scavenging and anti-inflammatory action (â¼50% less TNF-α in LPS-stimulated macrophages at only 0.1 mg/mL). PTGG was conjugated to proteins via a one-pot process; molar mass- and grafting density-matched PTGG-lysozyme conjugates were superior to their PEG analogues in terms of enzyme activity and stability against freeze-drying or oxidation; the latter is due to sacrificial oxidation of methionine-mimetic PTGG chains. Both in mice and rats, PTGG-ovalbumin displayed circulation half-lives up to twice as long as PEG-ovalbumin, but most importantlyâand differently from PEGâwithout any associated ABC effect seen either in the time dependency of blood concentration, in the liver/splenic accumulation, or in antipolymer IgM/IgG titers. Furthermore, similar pharmacokinetic results were obtained with PTGGylated/PEGylated liposomal nanocarriers. PTGG's 'active-stealth' character therefore makes it a highly promising alternative to PEG for conjugation to biologics or nanocarriers.
Assuntos
Polietilenoglicóis , Polímeros , Ratos , Camundongos , Humanos , Animais , Polietilenoglicóis/metabolismo , Polímeros/farmacologia , Glicerol , Espécies Reativas de Oxigênio , Ovalbumina , Estabilidade ProteicaRESUMO
The cytotoxic action of anticancer drugs can be potentiated by inhibiting DNA repair mechanisms. RAD51 is a crucial protein for genomic stability due to its critical role in the homologous recombination (HR) pathway. BRCA2 assists RAD51 fibrillation and defibrillation in the cytoplasm and nucleus and assists its nuclear transport. BRC4 is a peptide derived from the fourth BRC repeat of BRCA2, and it lacks the nuclear localization sequence. Here, we used BRC4 to (i) reverse RAD51 fibrillation; (ii) avoid the nuclear transport of RAD51; and (iii) inhibit HR and enhance the efficacy of chemotherapeutic treatments. Specifically, using static and dynamic light scattering, transmission electron microscopy, and microscale thermophoresis, we show that BRC4 eroded RAD51 fibrils from their termini through a "domino" mechanism and yielded monomeric RAD51 with a cumulative nanomolar affinity. Using cellular assays (BxPC-3, pancreatic cancer), we show that a myristoylated BRC4 (designed for a more efficient cell entry) abolished the formation of nuclear RAD51 foci. The present study provides a molecular description of RAD51 defibrillation, an essential step in BRCA2-mediated homologous recombination and DNA repair.
Assuntos
Proteína BRCA2 , Rad51 Recombinase , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Reparo do DNA , Recombinação Homóloga , Peptídeos/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismoRESUMO
Hyaluronic acid (HA)-based prodrugs bearing double-responsive (acid pH or oxidation) boronates of catechol-containing drugs were used to treat xenografted human prostate tumours (LNCaP) in SCID mice. The HA prodrugs accumulated significantly only in tumours (impressively, up to 40% of the injected dose after 24 h) and in liver, with negligible - actually anti-inflammatory - consequences in the latter. A quercetin-HA prodrug significantly slowed down tumour growth, in a dose-dependent fashion and with a much higher efficacy (up to 4 times) than equivalent doses of free quercetin. In short, boronated HA appears to be a very promising platform for targeted chemotherapy.
Assuntos
Neoplasias , Pró-Fármacos , Animais , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/uso terapêutico , Masculino , Camundongos , Camundongos SCID , Micelas , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologiaRESUMO
We describe how the organocatalytic, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based lactide ring-opening polymerization can be effectively performed in a very polar solvent, N-methylpyrrolidone (NMP). Due to a low ceiling temperature, this "living" mechanism has been unreported to date, but we here demonstrate that through a combination of low temperature and repeated monomer additions (starve-fed process), this mechanism enables the generation of a plethora of multifunctional homo- and (stereo)block-poly(lactide)s (PLAs) with exquisite control of the molecular weight dispersity (typically D < 1.1) and topology (from linear through 4-, 6-, or 8-armed stars and up to â¼140 armed combs). They are scarcely obtainable or inaccessible through more classical synthetic methods due to the poor solubility of multifunctional initiators (polyols) in most organic solvents and monomer melts. In these precisely designed structures, branching significantly altered the nature of the materials' hydrolytic degradation, allowing them to acquire a pronounced surface character (as opposed to the bulk degradation of linear polymers). Finally, we have assessed the amenability of this method to in situ block copolymerization by using the tacticity of PLLA blocks in PLLA-b-PDLLA versus PDLLA-b-PLLA (L-LA polymerized before or after DL-LA) as a sensitive method to detect (stereochemical) defects.
RESUMO
Chemokine-induced chemotaxis mediates physiological and pathological immune cell trafficking, as well as several processes involving cell migration. Among them, the role of CXCL12/CXCR4 signaling in cancer and metastasis is well known, and CXCR4 has been often targeted with small molecule-antagonists or short CXCL12-derived peptides to limit the pathological processes of cell migration and invasion. To reduce CXCR4-mediated chemotaxis, we adopted a different approach. We manufactured poly(lactic acid-co-glycolic acid) (PLGA)/Pluronic F127 nanoparticles through microfluidics-assisted nanoprecipitation and functionalized them with streptavidin to docking a biotinylated CXCL12 to be exposed on the nanoparticle surface. Our results show that CXCL12-decorated nanoparticles are non-toxic and do not induce inflammatory cytokine release in THP-1 monocytes cultured in fetal bovine and human serum-supplemented media. The cell internalization of our chemokine receptor-targeting particles increases in accordance with CXCR4 expression in FBS/medium. We demonstrated that CXCL12-decorated nanoparticles do not induce cell migration on their own, but their pre-incubation with THP-1 significantly decreases CXCR4+-cell migration, thereby antagonizing the chemotactic action of CXCL12. The use of biodegradable and immune-compatible chemokine-mimetic nanoparticles to reduce cell migration opens the way to novel antagonists with potential application in cancer treatments and inflammation.
RESUMO
We show the first example of a synergic approach of oxidant (ROS) scavenging carrier and ROS-responsive drug release in the context of a potential therapy against osteoporosis, aiming to inhibit the differentiation of inflammatory cells into osteoclasts. In our "tandem" approach, a branched amphiphilic, PEGylated polysulfide (PPSES-PEG) was preferred over a linear analogue, because of improved homogeneity in the aggregates (spherical micelles vs mixture of wormlike and spherical), increased stability, and higher drug loading (up to â¼22 wt % of antiosteoclastic rapamycin). These effects are ascribed to the branching inhibiting crystallization in the polysulfide blocks. The ROS-scavenging micelles alone were already able to reduce osteoclastogenesis in a RAW 264.7 model, but the "drug" combination (the polymer itself + rapamycin released only under oxidation) completely abrogated the process. An important take-home message is that the synergic performance depended very strongly on the oxidant:oxidizable group molar ratio, a parameter to carefully tune in the perspective of targeting specific diseases.
Assuntos
Portadores de Fármacos/química , Micelas , Nanomedicina/métodos , Osteogênese/efeitos dos fármacos , Sirolimo/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Camundongos , Osteoclastos/efeitos dos fármacos , Osteogênese/fisiologia , Oxirredução , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/química , Sulfetos/farmacologiaRESUMO
CD44 is an endocytic hyaluronic acid (HA) receptor, and is overexpressed in many carcinomas. This has encouraged the use of HA to design CD44-targeting carriers. This paper is about dissecting the mechanistic role of CD44. Here, HA-decorated nanoparticles are used to deliver siRNA to both tumoral (AsPC-1, PANC-1, HT-29, HCT-116) and non-tumoral (fibroblasts, differently polarized THP-1 macrophages, HUVEC) human cell lines, evaluating the initial binding of the nanoparticles, their internalization rate, and the silencing efficiency (cyclophilin B (PPIB) gene). Tumoral cells internalize faster and experience higher silencing than non-tumoral cells. This is promising as it suggests that, in a tumor, HA nanocarriers may have limited off-target effects. More far-reaching is the inter-relation between the four parameters of the study: CD44 expression, HA binding on cell surfaces, internalization rate, and silencing efficiency. No correlation is found between binding (an early event) and any of the other parameters, whereas silencing correlates both with speed of the internalization process and CD44 expression. This study confirms on one hand that HA-based carriers can perform a targeted action, but on the other it suggests that this may not be due to a selective binding event, but rather to a later recognition leading to selective internalization.
Assuntos
Receptores de Hialuronatos/química , Ácido Hialurônico/química , Nanopartículas/química , Linhagem Celular , Linhagem Celular Tumoral , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Difusão Dinâmica da Luz , Células HCT116 , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , Cinética , RNA Interferente Pequeno/química , Células THP-1RESUMO
Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.
Assuntos
Ouro/química , Dispositivos Lab-On-A-Chip , Lipossomos/química , Nanopartículas Metálicas/química , Técnicas Analíticas MicrofluídicasRESUMO
This study is about (1) nanomanufacturing (focusing on microfluidic-assisted nanoprecipitation), (2) advanced colloid characterization (focusing on field flow fractionation), and (3) the possible restructuring of surface disulfides. Disulfides are dynamic and exchangeable groups, and here we specifically focus, first, on their use to introduce biofunctional groups and, second, on their re-organization, which may lead to variable surface chemistries and uncontrolled cell interactions. The particles were obtained via microfluidic-assisted (flow-focused) nanoprecipitation of poly(ethylene glycol)-b-poly(ε-caprolactone) bearing or not a 2-pyridyl disulfide (PDS) terminal group, which quantitatively exchanges with thiols in solution. In this study, we have paid specific attention to size characterization, thereby also demonstrating the limitations of dynamic light scattering (DLS) as a stand-alone technique. By using asymmetric flow field flow fractionation coupled with DLS, static light scattering (SLS), and refractive index detectors, we show that relatively small amounts of >100 nm aggregates (cryogenic transmission electron microscopy and SLS/DLS comparison suggesting them to be wormlike micelles) dominated the stand-alone DLS results, whereas the "real" size distributions picked <50 nm. Our key result is that the kinetics of the conjugation based on PDS-thiol exchange was controlled by the thiol pKa, and this also determined the rate of the exchange between the resulting disulfides and glutathione (GSH). In particular, more acidic thiols (e.g., peptides, where a cysteine is flanked by cationic residues) react faster with PDS, but their disulfides hardly exchange with GSH; the reverse applies to thiols with a higher pKa. Disulfides that resist against restructuring via thiol-disulfide exchange allow for a stable bioconjugation, although they may be bad news for payload release under reducing conditions. However, experiments of both thiol release and nanoparticles uptake in cells (HCT116) show that also the disulfides formed from less-acidic and, therefore, less-reactive, and more exchangeable thiols were stable for at least a few hours even in a GSH-rich (10 mM) environment; this suggests a sufficiently long stability of surface groups to achieve, for example, a cell-targeting effect.
Assuntos
Dissulfetos/química , Microfluídica , Nanopartículas/química , Cisteína/química , Dissulfetos/síntese química , Etilenoglicóis/química , Etilenoglicóis/farmacologia , Glutationa/química , Células HCT116 , Humanos , Cinética , Nanopartículas/administração & dosagem , Peptídeos/química , Poliésteres/química , Poliésteres/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Propriedades de SuperfícieRESUMO
This study is about linking preparative processes of nanoparticles with the morphology of the nanoparticles and with their efficiency in delivering payloads intracellularly. The nanoparticles are composed of hyaluronic acid (HA) and chitosan; the former can address a nanoparticle to cell surface receptors such as CD44, the second allows both for entrapment of nucleic acids and for an endosomolytic activity that facilitates their liberation in the cytoplasm. Here, we have systematically compared nanoparticles prepared either A) through a two-step process based on intermediate (template) particles produced via ionotropic gelation of chitosan with triphosphate (TPP), which are then incubated with HA, or B) through direct polyelectrolyte complexation of chitosan and HA. Here we demonstrate that HA is capable to quantitatively replace TPP in the template process and significant aggregation takes place during the TPP-HA exchange. The templated chitosan/HA nanoparticles therefore have a mildly larger size (measured by dynamic light scattering alone or by field flow fractionation coupled to static or dynamic light scattering), and above all a higher aspect ratio (R g/R H) and a lower fractal dimension. We then compared the kinetics of uptake and the (antiluciferase) siRNA delivery performance in murine RAW 264.7 macrophages and in human HCT-116 colorectal tumor cells. The preparative method (and therefore the internal particle morphology) had little effect on the uptake kinetics and no statistically relevant influence on silencing (templated particles often showing a lower silencing). Cell-specific factors, on the contrary, overwhelmingly determined the efficacy of the carriers, with, e.g., those containing low-MW chitosan performing better in macrophages and those with high-MW chitosan in HCT-116.
RESUMO
We present a method for tyrosine-selective and reversible bioconjugation; tyrosines are enzymatically converted into catechols and in situ "clicked" onto boronic acids. Importantly, our process selectively produces catechols and avoids quinones, thereby improving the control over the chemical identity of the products. We have conjugated boronic acid-containing hyaluronic acid (HyA) to peptides bearing tyrosines in variable number and position; the use of tagging peptides for the provision of well exposed tyrosine residues-in our case the hemagglutinin-derived HA-tag-makes our approach applicable to virtually any protein; we have demonstrated this concept by conjugating HA-tagged ovalbumin to HyA, thereby also showing the feasibility of producing chimeric proteoglycans. A caveat of this appproach is that, although the formation of boronic esters does not affect the biological recognition of substrates (ovalbumin and HyA), the introduction of catechols may alter some of their biological properties: for example, only after tyrosinase treatment ovalbumin directly induced dendritic cell maturation, either alone or as a HyA conjugate.
Assuntos
Substâncias Macromoleculares/química , Monofenol Mono-Oxigenase/química , Ácidos Borônicos/química , Catecóis/química , Estudos de Viabilidade , Ácido Hialurônico/química , Peptídeos/química , Quinonas/químicaRESUMO
We have employed microfluidics (cross-shaped chip) for the preparation of drug-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles. The polymer precipitates from an acetone solution upon its controlled laminar mixing (flow focusing) with an aqueous solution of a surfactant, allowing for an operator-independent, up-scalable and reproducible preparative process of nanoformulations. Firstly, using PEGylated surfactants we have compared batch and microfluidic processes, and showed the superior reproducibility of the latter and its strong dependency on the acetone/water ratio (flow rate ratio). We have then focused on the issue of purification from free surfactant, and employed advanced characterization techniques such as flow-through dynamic light scattering as the in-line quality control technique, and field flow fractionation (FFF) with dynamic and static light scattering detection, which allowed the detection of surfactant micelles in mixture with nanoparticles (hardly possible with stand-alone dynamic light scattering). Finally, we have shown that the choice of polymer and surfactant affects the release behaviour of a model drug (paclitaxel), with high molecular weight PLGA (RG756) and low molecular weight surfactant (tocopheryl poly(ethylene glycol) 1000 succinate, TPGS) apparently showing higher burst and accelerated release.
Assuntos
Nanopartículas/química , Portadores de Fármacos/química , Células HCT116 , Humanos , Ácido Láctico/química , Microfluídica/métodos , Nanotecnologia/métodos , Paclitaxel/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Tensoativos/químicaRESUMO
Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time successfully delivered mRNA with chitosan/HA nanoparticles.
Assuntos
Quitosana/química , Ácido Hialurônico/química , Nanopartículas/química , Difusão Dinâmica da Luz , Células HCT116 , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Peso Molecular , Peptídeos Cíclicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
This study presents a quantitative assessment of the complexation between boronic acids and diols as a reversible and double-stimulus (oxidation and acidification)-responsive bioconjugation reaction. First, by using a competition assay, we have evaluated the equilibrium constants (water, pH 7.4) of 34 boronate/diol pairs, using diols of both aliphatic and aromatic (catechols) nature; in general, catechols were characterized by constants 3 orders of magnitude higher than those of aliphatic diols. Second, we have demonstrated that successful complexation with diols generated in situ via enzymatic reactions, and the boronate complexation was also employed to calculate the Michaelis-Menten parameters for two catechol-producing reactions: the demethylation of 3-methoxytyramine and the 2-hydroxylation of estradiol, respectively, mediated by P4502D6 and P4501A2. Third, we have prepared phenylboronic acid-functionalized hyaluronic acid (HA) and demonstrated the pH and H2O2-responsive character of the adducts that it formed with Alizarin Red S (ARS) used as a model catechol. The versatility and selectivity of the complexation and the mild character of the chemical species involved therefore make the boronate/catechol reaction an interesting candidate for bioconjugation purposes.
Assuntos
Antraquinonas/química , Ácidos Borônicos/química , Catecóis/química , Dopamina/análogos & derivados , Estradiol/química , Antraquinonas/metabolismo , Ácidos Borônicos/metabolismo , Catecóis/metabolismo , Cromatografia de Afinidade , Dopamina/química , Dopamina/metabolismo , Estradiol/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Água/química , Água/metabolismoRESUMO
CD44 is a potentially rewarding target in cancer therapy, although its mechanisms of ligand binding and internalization are still poorly understood. In this study, we have established quantitative relationships between CD44 expression in differently polarized macrophages (M0, M1, and M2-polarized THP-1 human macrophages) and the uptake of hyaluronic acid (HA)-based materials, which are potentially usable for CD44 targeting. We have validated a robust method for macrophage polarization, which sequentially uses differentiating and polarizing factors, and allows to show that CD44 expression depends on polarization (M1 > M0 ≥ M2). It is noteworthy that THP-1 M2 expressed CD44v6, suggesting their suitability as a model of tumor-associated macrophages. In the uptake of HA, both as a soluble polymer and in the form of (siRNA-loaded) nanoparticles, CD44 expression correlated positively with binding, but negatively with internalization. Counterintuitively, it appears that a higher presence of CD44 (in M1) allows a more efficient capture of HA materials, but a lower expression (in M2) is conducive to better internalization. Although possibly cell-specific, this unexpected relationship indicates that the common paradigm "higher CD44 expression = better targetability" is too simplistic; mechanistic details of both receptor presentation and association still need to be elucidated for a predictable targeting behavior.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico , Macrófagos/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Macrófagos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations.
Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/química , Catecóis/química , Portadores de Fármacos/química , Ácido Hialurônico/química , Nanopartículas/química , Taninos/farmacologia , Animais , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Nanopartículas/administração & dosagem , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Taninos/químicaRESUMO
Families of amphiphilic oxidation-responsive polymers (poly(ethylene glycol)-polysulfides) with different architectures (linear, 4, 6, and 8-armed stars and 10, 15, and 20-armed combs) and compositions (variable ethylene sulfide/propylene sulfide ratio) are prepared. In water, all the polymers assemble in spherical micelles, with critical micellar concentrations <0.01 mg mL-1 for all the branched polymers. Triple-detection gel permeation chromatography (GPC) and asymmetric field flow fractionation (AFFF) with dynamic and static light scattering detection, respectively, show an increasing compaction of the polymeric coil and a strong reduction of the aggregation number with increasing degree of branching. The key finding of this study is that the kinetics of the oxidative response sharply depend on the branching; in particular, it is highlighted that the degree of branching influences the lag time before a response can be observed rather than the speed of the response itself, a phenomenon that is attributed to a branching-dependent solubility of the oxidant in the polysulfide matrix.
Assuntos
Polímeros/química , Cinética , Oxirredução , Tensoativos/químicaRESUMO
The selective targeting of dendritic cells (DCs) can lead to more efficacious vaccines. Here, materials have been designed for a synergic DC targeting: interacting with CD44 through the use of hyaluronic acid (HA), and with mannose-binding lectins (typical DC pattern recognition receptors) through HA mannosylation. Negatively charged, HA-displaying nanoparticles are produced via polyelectrolyte complexation of (mannosylated) HA and high- or low- molecular-weight chitosan (CS, 36 and 656 kDa). Using CS36, HA is better exposed and the particles have a higher affinity for HA receptors; this means a higher number of receptors clustered around each particle and, due to the rather limited CD44 availability, an overall lower uptake per cell. Employing Langerhans-like XS106 cells, all particles show negligible toxicity or inflammatory activation. The cellular uptake kinetics are qualitatively similar to other leukocytic models and thus considered to be CD44-dominated; the uptake increases with increasing HA mannosylation and with the use of adjuvants (LPS, mannan) for CS36/HA but not for CS656//HA particles; this indicates that the interactions with mannose-binding receptors requires a correct ligand presentation, and only in that case can they be enhanced by appropriate adjuvants. In summary, mannose-binding receptors can be used to enhance the internalization of HA-based carriers, although this positive synergy depends on the mode of ligand presentation.
Assuntos
Células Dendríticas/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Lectinas Tipo C/metabolismo , Manose/metabolismo , Nanopartículas/química , Animais , Linhagem Celular , Quitosana , Coloides , Endocitose , Citometria de Fluxo , Ligantes , Camundongos , Peso Molecular , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
A new nano contrast agent has been prepared incorporating a molecular magnet in oxidation-responsive nanoparticles; this system has shown a remarkable sensitivity to hydrogen peroxide (detection down to at least 40 µM), which was used as a model reactive oxygen species. Surprisingly, the response had a binary (off/on) character, due to a non-linear cascade relation between extent of oxidation and water permeability in the particles.