RESUMO
G-rich DNA oligonucleotides derived from the promoter region of the HIV-1 long terminal repeat (LTR) were assembled onto an addressable cyclopeptide platform through sequential oxime ligation, a thiol-iodoacetamide SN2 reaction, and copper-catalyzed azide-alkyne cycloaddition reactions. The resulting conjugate was shown to fold into a highly stable antiparallel G4 architecture as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. The binding affinities of six state-of-the-art G4-binding ligands toward the HIV-G4 structure were compared to those obtained with a telomeric G4 structure and a hairpin structure. Surface plasmon resonance binding analysis provides new insights into the binding mode of broadly exploited G4 chemical probes and further suggests that potent and selective recognition of viral G4 structures of functional significance might be achieved.
RESUMO
Bis(µ-hydroxo)dicopper(II,II) bearing a naphthyridine-based ligand has been synthesized and characterized in the solid state and solution. Cyclic voltammetry at room temperature displays a reversible redox system that corresponds to the monoelectronic oxidation of the complex. Spectroscopic and time-resolved spectroelectrochemical data coupled to theoretical results support the formation of a charge-localized mixed-valent Cu(II,III)2 species.
RESUMO
A [Ru(bpy)3](2+)-like complex (L1) bearing two free terpyridine groups at the 5 and 5' positions of the same bipyridine, linked by the rigid and linear 2,5-dimethyl phenylene bridges has been synthesized to open access to two classes of linear molecular wires with photosensitive properties: a bimetallic coordination polymer and an inorganic triad. In this Research Article, we report on the synthesis and characterization of the resulting [{Ru(II_)Fe(II)}n](4n+) alternated bimetallic polymer and the [Co(III_)Ru(II_)Fe(II)](7+) triad based on the building block L1. The [{Ru(II_)Fe(II)}n](4n+) polymer is fully characterized in solution. Cyclic voltammetry and emission lifetime measurements show that the bridging ligand allows interaction between the metal centers in the excited state despite the lack of interactions in the ground state. Under visible irradiation, the polymer can be fully oxidized in the presence of a sacrificial electron acceptor in solution. Thin robust films of the polymer are easily obtained on ITO by a simple electrochemical procedure based on an electroreduction adsorption process. The ITO/[{Ru(II_)Fe(II)}n](4n+)-modified electrode behaves as a photocathode under irradiation in the presence of ArN2(+). The magnitude of the photocurrent is dependent on the film thickness, probably limited by the diffusion of charge in thicker film. On the other hand L1 is also used to construct a well-ordered triad in association with Co(III) and Fe(II) metallic centers as electron acceptor and donor, respectively. The metallic triad is anchored on ITO or on a SiO2 wafer, starting from a terpyridine phosphonate modified surface. AFM images prove the presence of the triad in a linear upward orientation. Irradiation of the ITO/[Co(III_)Ru(II_)Fe(II)](7+) modified surface in the presence of triethanolamine in CH3CN induces the generation of an anodic photocurrent of around 30 µA.cm(-2). The photocurrent density generated by the ITO/[Co(III_)Ru(II_)Fe(II)](7+) electrode, appears to be more stable than in the case of ITO/[{Ru(II_)Fe(II)}n](4n+) because of the presence of the anchoring group. Moreover, this photocurrent magnitude represents an enhancement of 30% compared to our previous triad ( Dalton Trans. 2014 , 43 , 12156 - 12159 ), proving the advantage of a linear and rigid spacer for the construction of such molecular assemblies with photoinduced charge transfer abilities.
RESUMO
G-rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper-catalyzed azide-alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G-quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context.
Assuntos
DNA/química , Oligonucleotídeos/química , RNA/química , Sequência de Bases , Fenômenos Biológicos , Dicroísmo Circular , Quadruplex G , Humanos , Ligantes , Modelos MolecularesRESUMO
A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.
Assuntos
DNA Catalítico/química , Soluções/química , Água/química , Biocatálise , DNA Catalítico/metabolismo , Quadruplex G , Modelos Moleculares , Conformação de Ácido NucleicoRESUMO
Biologically relevant DNA sequences were assembled onto addressable cyclopeptide scaffolds through sequential oxime and CuAAc reactions. The resulting conjugates are able to fold into well-defined anti-parallel DNA G-quadruplex structures, which exhibit high stability and reduced polymorphism.
Assuntos
DNA/química , Quadruplex G , Peptídeos Cíclicos/química , Anotação de Sequência Molecular , OximasRESUMO
The structural and electronic properties as well as the catalytic activity toward sulfoxidation of two new vanadium complexes have been investigated. They both possess in their coordination sphere two alkyl thiolate ligands: a dioxido V(V) complex [VO2L(NS2)](HNEt3) (1) (L(NS2) = 2,2'-(pyridine-2,6-diyl)bis(1,1'-diphenylethanethiol)) and an oxido V(IV) complex [VOL(N2S2)] (2) (L(N2S2) = 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1'-diphenylethanethiol)). The X-ray structure of 1 has revealed that the V(V) metal ion is at the center of a distorted trigonal bipyramid. The optimized structure of 2 obtained by DFT calculations displays a square-pyramidal geometry, consistent with its EPR spectrum characterized by an axial S = 1/2 signal (g⥠= 1.988, g⥠= 1.966, Ax(V) = 45 × 10(-4) cm(-1), Ay(V) = 42 × 10(-4) cm(-1), Az(V) = 135 × 10(-4) cm(-1)). DFT calculations have shown that the HOMO (highest occupied molecular orbital) of 1 is notably localized on the two thiolate sulfur atoms (56% and 22%, respectively), consistent with the expected covalent character of the V(V)-S bond. On the other hand, the SOMO (singly occupied molecular orbital) of 2 is exclusively localized at the V(IV) ion (92%). Complexes 1 and 2 have shown an ability to catalytically oxidize sulfide into sulfoxide. The oxidation reactions have been carried out with thioanisole as substrate and hydrogen peroxide as oxidant. Yields of 80% and 75% have been obtained in 10 and 15 min for 1 and 2, respectively. However, in terms of conversion, 1 is more efficient than 2 (81% and 44%, respectively). More importantly, the reaction is completely selective with no trace of sulfone produced. While 1 displays a poor stability, catalyst 2 shows the same efficiency after five successive additions of oxidant and substrate. The difference in reactivity and stability between both complexes has been rationalized through a mechanism study performed by means of experimental data ((51)V NMR and EPR spectroscopy) combined with theoretical calculations. It has been shown that the structure of the cis-oxo peroxo V(V) intermediate species, which is related to its stability, can partly explain these discrepancies.