RESUMO
Color stability is among the most frequent causes of restoration failures, and influences surface properties. Aim: The aim of this study was to investigate the influence of pigment solutions on low-shrinkage and conventional composites regarding changes in the physical properties of composite surfaces. Materials and Method: Specimens of four composites (Filtek Z350 XT, Point 4, N'Durance and Venus Diamond) were randomly distributed into three groups to be submitted to each of three pigment solutions (red wine, tomato sauce and coffee) in fifteen-minute daily cycles, for twenty-eight days. There were 12 groups altogether (n = 10). Color, surface roughness and hardness tests were performed. Statistical analysis includedAnalysis of variance (ANOVA) and Tukey's significance test (a = 0.05). Results: Color changes caused by the solutions did not differ significantly among Filtek Z350 XT, Venus Diamond and N'Durance. Hardness decreased significantly in Filtek Z350 XT and Venus Diamond after chemical challenge with each solution. For the composite independent factor, roughness was highest in Venus Diamond, followed by Filtek Z350 XT, Point 4 and N'Durance. Conclusions: Treatment with different pigment solutions (red wine, tomato sauce or coffee) increased stainability and decreased hardness of both low-shrinkage and conventional composites, while roughness was unaffected.
A estabilidade de cor está entre as causas mais frequentes de falhas de restauragoes, que também influenciam suas propriedades superficiais. Objetivo: O objetivo do presente estudo foi investigar a influencia de solugoes de pigmentos em compósitos convencionais e de baixa retragao, bem como alteragoes naspropriedades físicas da superficie dos compósitos. Materiais eMétodo: Amostras de cada compósito (Filtek Z350XT, Point 4, N'Durance e Venus Diamond) foram distribuidas aleatoriamente em grupos submetidos a cada solugao pigmentante (vinho tinto, molho de tomate e café) em ciclos diários de quinze minutos, durante vinte e oito dias. Assim, totalizando 12 grupos (n = 10). Foram realizados testes de cor, rugosidade superficial e dureza. A Análise Estatistica foi realizada usando Análise de variáncia (ANOVA) e o teste de significáncia de Tukey (a = 0.05). Resultados: As alteragoes de cor desencadeadas pelas solugoes investigadas nao mostraram diferenga estatisticamente significativa entre os compósitos Filtek Z350 XT, Venus Diamond e N'Durance. Os valores de dureza registrados para Filtek Z350XT e Venus Diamond diminuiram significativamente após o desafio químico com cada uma das solugoes pigmentantes. Para o fator independente compósito, Venus Diamond registrou a maior rugosidade; foi seguido por Filtek Z350XT, Point 4 e N'Durance. Conclusoes: Os tratamentos das amostras com diferentes solugoes pigmentantes (vinho tinto, molho de tomate e café) aumentaram a manchabilidade dos compósitos convencionais e de baixa retragao e diminuiram sua dureza, embora nao tenham afetado a rugosidade dos compósitos.
Assuntos
Café , Diamante , Dureza , Propriedades de SuperfícieRESUMO
ABSTRACT Color stability is among the most frequent causes of restoration failures, and influences surface properties. Aim: The aim of this study was to investigate the influence of pigment solutions on low-shrinkage and conventional composites regarding changes in the physical properties of composite surfaces. Materials and Method: Specimens of four composites (Filtek Z350 XT, Point 4, N'Durance and Venus Diamond) were randomly distributed into three groups to be submitted to each of three pigment solutions (red wine, tomato sauce and coffee) in fifteen-minute daily cycles, for twenty-eight days. There were 12 groups altogether (n = 10). Color, surface roughness and hardness tests were performed. Statistical analysis includedAnalysis of variance (ANOVA) and Tukey's significance test (a = 0.05). Results: Color changes caused by the solutions did not differ significantly among Filtek Z350 XT, Venus Diamond and N'Durance. Hardness decreased significantly in Filtek Z350 XT and Venus Diamond after chemical challenge with each solution. For the composite independent factor, roughness was highest in Venus Diamond, followed by Filtek Z350 XT, Point 4 and N'Durance. Conclusions: Treatment with different pigment solutions (red wine, tomato sauce or coffee) increased stainability and decreased hardness of both low-shrinkage and conventional composites, while roughness was unaffected.
RESUMO A estabilidade de cor está entre as causas mais frequentes de falhas de restauragoes, que também influenciam suas propriedades superficiais. Objetivo: O objetivo do presente estudo foi investigar a influencia de solugoes de pigmentos em compósitos convencionais e de baixa retragao, bem como alteragoes naspropriedades físicas da superficie dos compósitos. Materiais eMétodo: Amostras de cada compósito (Filtek Z350XT, Point 4, N'Durance e Venus Diamond) foram distribuidas aleatoriamente em grupos submetidos a cada solugao pigmentante (vinho tinto, molho de tomate e café) em ciclos diários de quinze minutos, durante vinte e oito dias. Assim, totalizando 12 grupos (n = 10). Foram realizados testes de cor, rugosidade superficial e dureza. A Análise Estatistica foi realizada usando Análise de variáncia (ANOVA) e o teste de significáncia de Tukey (a = 0.05). Resultados: As alteragoes de cor desencadeadas pelas solugoes investigadas nao mostraram diferenga estatisticamente significativa entre os compósitos Filtek Z350 XT, Venus Diamond e N'Durance. Os valores de dureza registrados para Filtek Z350XT e Venus Diamond diminuiram significativamente após o desafio químico com cada uma das solugoes pigmentantes. Para o fator independente compósito, Venus Diamond registrou a maior rugosidade; foi seguido por Filtek Z350XT, Point 4 e N'Durance. Conclusoes: Os tratamentos das amostras com diferentes solugoes pigmentantes (vinho tinto, molho de tomate e café) aumentaram a manchabilidade dos compósitos convencionais e de baixa retragao e diminuiram sua dureza, embora nao tenham afetado a rugosidade dos compósitos.
RESUMO
OBJECTIVES: To evaluate the microhardness of tooth enamel remineralized with enamel matrix protein solution as well as the shear bond strength of orthodontic brackets bonded to this surface. MATERIALS AND METHODS: In total, 24 human premolars were selected and divided into 3 experimental groups (n = 8): SE-sound enamel, DE-demineralized enamel, and TE-demineralized enamel treated with amelogenin solution. Samples from DE and TE groups were subjected to pH cycling to induce initial artificial caries lesion. TE group was treated with amelogenin solution. Samples were placed in artificial saliva for 7 days. Knoop microhardness was measured before any intervention (T0), after pH cycling (T1) and after amelogenin solution treatment application (T2). Twenty-four hours after ceramic orthodontic brackets were bonded, samples were subjected to shear test in a universal testing machine. Microhardness and shear measurement distributions were subjected to Kolmogorov-Smirnov normality test, which was followed by parametric tests (α = 0.05): 2-way analysis of variance (factors: enamel condition × treatment) and Tukey posttest for all three groups (SE, DE, and TE) in T0 and T2 for microhardness; analysis of variance and Tukey's test, for shear bond strength test. RESULTS: Means recorded for Knoop microhardness in T2, for the SE (366.7 KHN) and TE (342.8 KHN) groups, were significantly higher than those recorded for the DE group (263.5 KHN). The shear bond strength of the SE (15.44 MPa) and TE (14.84 MPa) groups statistically differed from that of the DE group (11.95 MPa). CONCLUSION: In vitro demineralized enamel treatment with amelogenin solution was capable of taking samples' hardness back to levels similar to those observed for sound enamel. The shear bond strength on the enamel subjected to this treatment was similar to that observed for healthy enamel and higher than that observed for demineralized enamel.
RESUMO
This study evaluated the chemical composition and microhardness of human enamel treated with an Enamel Matrix Derivative (EMD) solution, and the bond strength between composite resin and this enamel. Thirty human enamel samples were randomly divided into three groups: Untouched Enamel (UE), Demineralized Enamel (DE) and Demineralized Enamel Treated with EMD (ET). DE and ET groups were subjected to acid challenge and ET treated with EMD (EMD was directly applied over conditioned enamel and left for 15 min). Samples from each group (n=4) had chemical composition assessed through to attenuated total reflectance Fourier transform infrared (ATR-FTIR). Knoop microhardness of enamel samples from each group (n=10) was measured. For the microshear bond strength, the samples were etched for 30 s, and the adhesive was applied and cured for 10 s. Two matrixes were placed on the samples, filled with Filtek Z350 XT composite and cured for 20 s, each. The matrix was removed, and the microshear bond strength of each group (n=10) was tested. Data were subjected to Kruskal-Wallis test (for microhardness), to analysis of variance and to Tukey's test (for microshear bond strength); (α=0.05). FTIR results have shown phosphate (hydroxyapatite indicator) in 900-1200 cm-1 bands in the UE and ET groups, which were different from the DE group. Microhardness and microshear analyses recorded higher statistical values for the UE and ET groups than for DE. EMD application to demineralized enamel seems to have remineralized the enamel; thus, the microhardness and bond strength was similar between UE and ET groups.