Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 325: 124654, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33461123

RESUMO

Considering the glitches in making commercially realistic fuel, this research article has demonstrated the lipid accumulation in four fast growing, filamentous cyanobacterial strains. On day 26, the lipid content estimated was 6.7, 8.2, 10.2, and 9.4% from Phormidium sp. FW01, Phormidium sp. FW02, Oscillatoria sp. FW01, and Oscillatoria sp. FW02, respectively. Of the photosynthetically active radiation (PAR) tested, 2000 lx was found to higher biomass and lipid at about 1.83 g/L and 12.5%, respectively for Oscillatoria sp. FW01. Of <5 °C, 15 °C, 25 °C, 37-40 °C tested, 11.2% lipid was extracted from Oscillatoria sp. FW01 grown at 37-40 °C and pH did not make any changes in biomass and lipid content. The optimized abiotic conditions showed higher polar lipids about 75% in all the tested cyanobacteria and further, Oscillatoria sp. FW01 yielded 57% fatty acid methyl ester, which contains desirable fatty acids C 16:0, C 16:1, C18:1, C18:3 for high quality biodiesel.


Assuntos
Cianobactérias , Microalgas , Biocombustíveis , Biomassa , Ácidos Graxos , Lipídeos
2.
Environ Technol ; 40(21): 2802-2812, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29543579

RESUMO

This experimental study aims to mitigate harmful emissions from a CI engine using bio-energy with carbon capture and storage (BECCS) approach. The engine used for this experimental work is a single cylinder CI engine with a rated power of 5.2 kW at a constant speed of 1500 rpm. The BECCS approach is a combination of plant-based biofuels and carbon capture and storage (CCS) system. The whole investigation was done in four phases: (1) Substituting diesel with Karanja oil methyl ester (KOME) (2) Equal volume blending of Orange oil (ORG) with KOME (3) 20% blending of n-butanol (B) with KOME-ORG blend (4) CCS system with zeolite based non-selective catalytic reduction (NSCR) and mono ethanolamine (MEA) based selective non-catalytic reduction (SNCR) system with KOME-ORG + B20 blend. The experimental results show that substitution of diesel with KOME reduces smoke emission, but increases NO and CO2 emission. KOME-ORG blend reduces CO2 and smoke emissions with high NO emission due to combustion improvement. In comparison with the sole combustion of KOME at full load condition, the combination of KOME-ORG + B20 as bio-fuel with zeolite based post-combustion treatment system resulted in a maximum reduction of NO, smoke and CO2 emission by 41%, 19% and 15% respectively.


Assuntos
Gasolina , Emissões de Veículos , Biocombustíveis , Monóxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA