Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315110

RESUMO

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Assuntos
Anticorpos Antivirais , Orthohantavírus , Humanos , Benchmarking , Anticorpos Amplamente Neutralizantes , Sequência Conservada
2.
Nat Commun ; 14(1): 2751, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173311

RESUMO

Understanding the longitudinal dynamics of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we track SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in six mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses decline by two- to four-fold through the study period. Breakthrough infection elicits minimal de novo Omicron BA.1-specific B cell responses but drives affinity maturation of pre-existing cross-reactive MBCs toward BA.1, which translates into enhanced breadth of activity across other variants. Public clones dominate the neutralizing antibody response at both early and late time points following breakthough infection, and their escape mutation profiles predict newly emergent Omicron sublineages, suggesting that convergent antibody responses continue to shape SARS-CoV-2 evolution. While the study is limited by our relatively small cohort size, these results suggest that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory, supporting the continued development of next-generation variant-based vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Infecções Irruptivas , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes
3.
Sci Transl Med ; 15(688): eadg2783, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947596

RESUMO

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação , Anticorpos Monoclonais/uso terapêutico
4.
bioRxiv ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36172124

RESUMO

Understanding the evolution of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we tracked SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses declined by two- to four-fold through the study period. Breakthrough infection elicited minimal de novo Omicron-specific B cell responses but drove affinity maturation of pre-existing cross-reactive MBCs toward BA.1. Public clones dominated the neutralizing antibody response at both early and late time points, and their escape mutation profiles predicted newly emergent Omicron sublineages. The results demonstrate that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory and suggest that convergent neutralizing antibody responses continue to shape viral evolution.

5.
Immunity ; 55(9): 1710-1724.e8, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35944529

RESUMO

Human metapneumovirus (hMPV) is a leading cause of acute lower respiratory tract infections in high-risk populations, yet there are no vaccines or anti-viral therapies approved for the prevention or treatment of hMPV-associated disease. Here, we used a high-throughput single-cell technology to interrogate memory B cell responses to the hMPV fusion (F) glycoprotein in young adult and elderly donors. Across all donors, the neutralizing antibody response was primarily directed to epitopes expressed on both pre- and post-fusion F conformations. However, we identified rare, highly potent broadly neutralizing antibodies that recognize pre-fusion-specific epitopes and structurally characterized an antibody that targets a site of vulnerability at the pre-fusion F trimer apex. Additionally, monotherapy with neutralizing antibodies targeting three distinct antigenic sites provided robust protection against lower respiratory tract infection in a small animal model. This study provides promising monoclonal antibody candidates for passive immunoprophylaxis and informs the rational design of hMPV vaccine immunogens.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Metapneumovirus , Infecções Respiratórias , Idoso , Animais , Epitopos , Glicoproteínas , Humanos , Proteínas Virais de Fusão , Adulto Jovem
6.
Sci Transl Med ; 14(636): eabl5399, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294259

RESUMO

The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Cricetinae , Epitopos , Glicoproteínas , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Humanos
7.
Sci Immunol ; 6(56)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622975

RESUMO

A comprehensive understanding of the kinetics and evolution of the human B cell response to SARS-CoV-2 infection will facilitate the development of next-generation vaccines and therapies. Here, we longitudinally profiled this response in mild and severe COVID-19 patients over a period of five months. Serum neutralizing antibody (nAb) responses waned rapidly but spike (S)-specific IgG+ memory B cells (MBCs) remained stable or increased over time. Analysis of 1,213 monoclonal antibodies (mAbs) isolated from S-specific MBCs revealed a primarily de novo response that displayed increased somatic hypermutation, binding affinity, and neutralization potency over time, providing evidence for prolonged antibody affinity maturation. B cell immunodominance hierarchies were similar across donor repertoires and remained relatively stable as the immune response progressed. Cross-reactive B cell populations, likely re-called from prior endemic beta-coronavirus exposures, comprised a small but stable fraction of the repertoires and did not contribute to the neutralizing response. The neutralizing antibody response was dominated by public clonotypes that displayed significantly reduced activity against SARS-CoV-2 variants emerging in Brazil and South Africa that harbor mutations at positions 501, 484 and 417 in the S protein. Overall, the results provide insight into the dynamics, durability, and functional properties of the human B cell response to SARS-CoV-2 infection and have implications for the design of immunogens that preferentially stimulate protective B cell responses.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , COVID-19/virologia , Estudos de Coortes , Reações Cruzadas , Feminino , Humanos , Memória Imunológica , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia
8.
Science ; 371(6531): 823-829, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33495307

RESUMO

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope that overlaps the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Sítios de Ligação , Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/metabolismo , COVID-19/prevenção & controle , COVID-19/terapia , Técnicas de Visualização da Superfície Celular , Evolução Molecular Direcionada , Epitopos/imunologia , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos Endogâmicos BALB C , Domínios Proteicos , Engenharia de Proteínas , Receptores de Coronavírus/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/terapia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
9.
bioRxiv ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33236009

RESUMO

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. Here, we employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with remarkable potency. Structural and biochemical studies demonstrate that ADG-2 employs a unique angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In murine models of SARS-CoV and SARS-CoV-2 infection, passive transfer of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate for the treatment and prevention of SARS-CoV-2 and future emerging SARS-like CoVs.

10.
MAbs ; 9(7): 1036-1040, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28745541

RESUMO

Early stage assays that evaluate monoclonal antibody drug-like properties serve as valuable tools for selection of lead candidates. One liability for clinical development, off-target reactivity, is often assessed by binding to a mixture or panel of noncognate proteins. While robust, these mixes are often ill-defined, and can suffer from issues such as lot-to-lot variability. In this study, we discovered in immunoprecipitation experiments that certain chaperones are present in one of these mixtures;we then explored the use of recombinant chaperone proteins as well-characterized agents to predict antibody nonspecificity. Antibody binding to the heat shock proteins HSP70, HSP90, or trigger factor all served as predictors of cross-interaction propensity, with HSP90 providing the greatest ability to predict antibody clearance rates in mouse. Individual chaperone binding correlates surprisingly closely with binding to complex cell extracts, with the exception of a few "false negatives" (assuming a complex cell extract as the "true" value). As defined reagents, these chaperone reagents present advantages for high throughput assays of nonspecificity.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Proteínas de Choque Térmico/imunologia , Animais , Reações Cruzadas/imunologia , Humanos , Camundongos
11.
PLoS One ; 11(12): e0167935, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28002433

RESUMO

Humans and higher primates are unique in that they lack uricase, the enzyme capable of oxidizing uric acid. As a consequence of this enzyme deficiency, humans have high serum uric acid levels. In some people, uric acid levels rise above the solubility limit resulting in crystallization in joints, acute inflammation in response to those crystals causes severe pain; a condition known as gout. Treatment for severe gout includes injection of non-human uricase to reduce serum uric acid levels. Krystexxa® is a hyper-PEGylated pig-baboon chimeric uricase indicated for chronic refractory gout that induces an immunogenic response in 91% of treated patients, including infusion reactions (26%) and anaphylaxis (6.5%). These properties limit its use and effectiveness. An innovative approach has been used to develop a therapeutic uricase with improved properties such as: soluble expression, neutral pH solubility, high E. coli expression level, thermal stability, and excellent activity. More than 200 diverse uricase sequences were aligned to guide protein engineering and reduce putative sequence liabilities. A single uricase lead candidate was identified, which showed low potential for immunogenicity in >200 human donor samples selected to represent diverse HLA haplotypes. Cysteines were engineered into the lead sequence for site specific PEGylation and studies demonstrated >95% PEGylation efficiency. PEGylated uricase retains enzymatic activity in vitro at neutral pH, in human serum and in vivo (rats and canines) and has an extended half-life. In canines, an 85% reduction in serum uric acid levels was observed with a single subcutaneous injection. This PEGylated, non-immunogenic uricase has the potential to provide meaningful benefits to patients with gout.


Assuntos
Gota/tratamento farmacológico , Urato Oxidase/uso terapêutico , Animais , Varredura Diferencial de Calorimetria , Cães , Escherichia coli/metabolismo , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Cinética , Papio , Polietilenoglicóis/química , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Especificidade por Substrato , Suínos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Urato Oxidase/efeitos adversos , Urato Oxidase/imunologia
12.
MAbs ; 8(5): 941-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27050875

RESUMO

Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Região Variável de Imunoglobulina/química , Engenharia de Proteínas/métodos , Humanos , Modelos Moleculares , Viscosidade
13.
MAbs ; 8(3): 454-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26854859

RESUMO

CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.


Assuntos
5'-Nucleotidase , Monofosfato de Adenosina , Anticorpos Monoclonais/química , Antineoplásicos/química , Inibidores Enzimáticos/química , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/química , Monofosfato de Adenosina/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Hidrólise
14.
Mol Ther Nucleic Acids ; 3: e202, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25313621

RESUMO

Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

15.
Neurobiol Dis ; 56: 6-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583610

RESUMO

Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant late onset neurodegenerative disease caused by an expanded polyglutamine tract in ataxin-1. Here, we compared the protective effects of overexpressing ataxin-1-like using recombinant AAVs, or reducing expression of mutant ataxin-1 using virally delivered RNA interference (RNAi), in a transgenic mouse model of SCA1. For the latter, we used an artificial microRNA (miR) design that optimizes potency, efficacy and safety to suppress ataxin-1 expression (miS1). Delivery of either ataxin-1-like or miS1 viral vectors to SCA1 mice cerebella resulted in widespread cerebellar Purkinje cell transduction and improved behavioral and histological phenotypes. Our data indicate the utility of either approach as a possible therapy for SCA1 patients.


Assuntos
Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Interferência de RNA/fisiologia , Ataxias Espinocerebelares/terapia , Animais , Ataxina-1 , Ataxinas , Comportamento Animal/fisiologia , Western Blotting , Encéfalo/patologia , Dependovirus/genética , Marcha/fisiologia , Vetores Genéticos , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Plasmídeos , Equilíbrio Postural/fisiologia , RNA Interferente Pequeno/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/psicologia
16.
Mol Ther ; 20(7): 1393-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22588273

RESUMO

Recombinant vector systems have been recently identified that when delivered systemically can transduce neurons, glia, and endothelia in the central nervous system (CNS), providing an opportunity to develop therapies for diseases affecting the brain without performing direct intracranial injections. Vector systems based on adeno-associated virus (AAV) include AAV serotype 9 (AAV9) and AAVs that have been re-engineered at the capsid level for CNS tropism. Here, we performed a head-to-head comparison of AAV9 and a capsid modified AAV for their abilities to rescue CNS and peripheral disease in an animal model of lysosomal storage disease (LSD), the mucopolysacharidoses (MPS) VII mouse. While the peptide-modified AAV reversed cognitive deficits, improved storage burden in the brain, and substantially prolonged survival, we were surprised to find that AAV9 provided no CNS benefit. Additional experiments demonstrated that sialic acid, a known inhibitor of AAV9, is elevated in the CNS of MPS VII mice. These studies highlight how disease manifestations can dramatically impact the known tropism of recombinant vectors, and raise awareness to assuming similar transduction profiles between normal and disease models.


Assuntos
Encéfalo , Dependovirus/genética , Terapia Genética , Mucopolissacaridose VII/terapia , Ácido N-Acetilneuramínico/metabolismo , Animais , Proteínas do Capsídeo/genética , Modelos Animais de Doenças , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Mucopolissacaridose VII/genética
17.
Proc Natl Acad Sci U S A ; 109(22): 8546-51, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586108

RESUMO

Infectious prions containing the pathogenic conformer of the mammalian prion protein (PrP(Sc)) can be produced de novo from a mixture of the normal conformer (PrP(C)) with RNA and lipid molecules. Recent reconstitution studies indicate that nucleic acids are not required for the propagation of mouse prions in vitro, suggesting the existence of an alternative prion propagation cofactor in brain tissue. However, the identity and functional properties of this unique cofactor are unknown. Here, we show by purification and reconstitution that the molecule responsible for the nuclease-resistant cofactor activity in brain is endogenous phosphatidylethanolamine (PE). Synthetic PE alone facilitates conversion of purified recombinant (rec)PrP substrate into infectious recPrP(Sc) molecules. Other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol, were unable to facilitate recPrP(Sc) formation in the absence of RNA. PE facilitated the propagation of PrP(Sc) molecules derived from all four different animal species tested including mouse, suggesting that unlike RNA, PE is a promiscuous cofactor for PrP(Sc) formation in vitro. Phospholipase treatment abolished the ability of brain homogenate to reconstitute the propagation of both mouse and hamster PrP(Sc) molecules. Our results identify a single endogenous cofactor able to facilitate the formation of prions from multiple species in the absence of nucleic acids or other polyanions.


Assuntos
Encéfalo/metabolismo , Ácidos Nucleicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Príons/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Cricetinae , Imuno-Histoquímica , Camundongos , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Príons/química , Príons/genética , Dobramento de Proteína , RNA/metabolismo , Proteínas Recombinantes/metabolismo
18.
Mol Ther Nucleic Acids ; 1: e53, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23629028

RESUMO

Delivery of small interfering RNA (siRNA) targeted to specific cell types is a significant challenge for the development of RNA interference-based therapeutics. Recently, PTD-DRBD, a double-stranded RNA binding domain (DRBD) fused to the TAT protein transduction domain (PTD), was shown to be effective at delivering siRNA in a non-cell type-specific manner. Here, we evaluated the potential of DRBD as a general protein platform for targeted small interfering RNA (siRNA) delivery. We found that a single DRBD was insufficient to stably complex siRNA when fused to targeting peptides other than PTD, which facilitated nonspecific nucleic acid binding. In contrast to PTD-DRBD, fusion proteins containing two DRBDs (2× DRBD) yielded specific and stable siRNA binding. These proteins could mediate the cellular uptake of siRNA in vitro, though compared with PTD-DRBD gene silencing was attenuated by endosomal entrapment. Our findings suggest that unlike a single DRBD, 2× DRBD inhibits siRNA escape into the cytoplasm and/or induces an internalization pathway distinct from that of PTD-DRBD. Collectively, these data indicate that while 2× DRBD retains siRNA-binding activity when fused to different cell surface-interacting peptides, the utility of 2× DRBD for cell-specific RNA interference is limited without further protein engineering to enhance the bioavailability of the delivered siRNAs.Molecular Therapy - Nucleic Acids (2012) 1, e53; doi:10.1038/mtna.2012.43; published online 13 November 2012.

19.
PLoS Pathog ; 7(7): e1002128, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779169

RESUMO

Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.


Assuntos
Encéfalo/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Dobramento de Proteína , Animais , Encéfalo/patologia , Células CHO , Cricetinae , Cricetulus , Camundongos , Proteínas PrPC/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Ligação Proteica , Estrutura Terciária de Proteína
20.
Biochemistry ; 49(18): 3928-34, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20377181

RESUMO

The cofactor preferences for in vitro propagation of the protease-resistant isoforms of the prion protein (PrP(Sc)) from various rodent species were investigated using the serial protein misfolding cyclic amplification (sPMCA) technique. Whereas RNA molecules facilitate hamster PrP(Sc) propagation, RNA and several other polyanions do not promote the propagation of mouse and vole PrP(Sc) molecules. Pretreatment of crude Prnp(0/0) (PrP knockout) brain homogenate with RNase A or micrococcal nuclease inhibited hamster but not mouse PrP(Sc) propagation in a reconstituted system. Mouse PrP(Sc) propagation could be reconstituted by mixing PrP(C) substrate with homogenates prepared from either brain or liver, but not from several other tissues that were tested. These results reveal species-specific differences in cofactor utilization for PrP(Sc) propagation in vitro and also demonstrate the existence of an endogenous cofactor present in brain tissue not composed of nucleic acids.


Assuntos
Coenzimas/química , Peptídeo Hidrolases/química , Proteínas PrPSc/química , Animais , Arvicolinae , Células CHO , Cricetinae , Cricetulus , Camundongos , Ligação Proteica , Estabilidade Proteica , RNA/química , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA