Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891002

RESUMO

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias
2.
J Immunol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966257

RESUMO

Identification of neoepitopes that can control tumor growth in vivo remains a challenge even 10 y after the first genomics-defined cancer neoepitopes were identified. In this study, we identify a neoepitope, resulting from a mutation in the junction plakoglobin (Jup) gene (chromosome 11), from the mouse colon cancer line MC38-FABF (C57BL/6). This neoepitope, Jup mutant (JupMUT), was detected during mass spectrometry of MHC class I-eluted peptides from the tumor. JupMUT has a predicted binding affinity of 564 nM for the Kb molecule and a higher predicted affinity of 82 nM for Db. However, whereas structural modeling of JupMUT and its unmutated counterpart Jup wild-type indicates that there are little conformational differences between the two epitopes bound to Db, large structural divergences are predicted between the two epitopes bound to Kb. Together with in vitro binding data with RMA-S cells, these data suggest that Kb rather than Db is the relevant MHC class I molecule of JupMUT. Immunization of naive C57BL/6 mice with JupMUT elicits CD8-dependent tumor control of a MC38-FABF challenge. Despite the CD8 dependence of JupMUT-mediated tumor control in vivo, CD8+ T cells from JupMUT-immunized mice do not produce higher levels of IFN-γ than do naive mice. The structural and immunological characteristics of JupMUT are substantially different from those of many other neoepitopes that have been shown to mediate tumor control.

3.
Sci Transl Med ; 14(649): eaba4380, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704596

RESUMO

The majority of JAK2V617F-negative myeloproliferative neoplasms (MPNs) have disease-initiating frameshift mutations in calreticulin (CALR), resulting in a common carboxyl-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in patients with CALRMUT MPN for unknown reasons. We examined class I major histocompatibility complex (MHC-I) allele frequencies in patients with CALRMUT MPN from two independent cohorts. We observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are underrepresented in patients with CALRMUT MPN. We speculated that this was due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifested. As a consequence of this MHC-I allele restriction, we reasoned that patients with CALRMUT MPN would not efficiently respond to a CALRMUT fragment cancer vaccine but would when immunized with a modified CALRMUT heteroclitic peptide vaccine approach. We found that heteroclitic CALRMUT peptides specifically designed for the MHC-I alleles of patients with CALRMUT MPN efficiently elicited a CALRMUT cross-reactive CD8+ T cell response in human peripheral blood samples but not to the matched weakly immunogenic CALRMUT native peptides. We corroborated this effect in vivo in mice and observed that C57BL/6J mice can mount a CD8+ T cell response to the CALRMUT fragment upon immunization with a CALRMUT heteroclitic, but not native, peptide. Together, our data emphasize the therapeutic potential of heteroclitic peptide-based cancer vaccines in patients with CALRMUT MPN.


Assuntos
Vacinas Anticâncer , Transtornos Mieloproliferativos , Neoplasias , Animais , Calreticulina/genética , Humanos , Janus Quinase 2/genética , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Peptídeos , Vacinas de Subunidades Antigênicas
4.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320837

RESUMO

Identification of neoepitopes that are effective in cancer therapy is a major challenge in creating cancer vaccines. Here, using an entirely unbiased approach, we queried all possible neoepitopes in a mouse cancer model and asked which of those are effective in mediating tumor rejection and, independently, in eliciting a measurable CD8 response. This analysis uncovered a large trove of effective anticancer neoepitopes that have strikingly different properties from conventional epitopes and suggested an algorithm to predict them. It also revealed that our current methods of prediction discard the overwhelming majority of true anticancer neoepitopes. These results from a single mouse model were validated in another antigenically distinct mouse cancer model and are consistent with data reported in human studies. Structural modeling showed how the MHC I-presented neoepitopes had an altered conformation, higher stability, or increased exposure to T cell receptors as compared with the unmutated counterparts. T cells elicited by the active neoepitopes identified here demonstrated a stem-like early dysfunctional phenotype associated with effective responses against viruses and tumors of transgenic mice. These abundant anticancer neoepitopes, which have not been tested in human studies thus far, can be exploited for generation of personalized human cancer vaccines.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Epitopos de Linfócito T , Imunoterapia , Neoplasias , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/farmacologia , Feminino , Camundongos , Neoplasias/imunologia , Neoplasias/terapia
5.
Semin Immunol ; 47: 101387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31952902

RESUMO

Tumors are immunogenic and the non-synonymous point mutations harbored by tumors are a source of their immunogenicity. Immunologists have long been enamored by the idea of synthetic peptides corresponding to mutated epitopes (neoepitopes) as specific "vaccines" against tumors presenting those neoepitopes in context of MHC I. Tumors may harbor hundreds of point mutations and it would require effective prediction algorithms to identify candidate neoepitopes capable of eliciting potent tumor-specific CD8+ T cell responses. Our current understanding of MHC I-restricted epitopes come from the observance of CD8+ T cell responses against viral (vaccinia, lymphocytic choriomeningitis etc.) and model (chicken ovalbumin, hen egg lysozyme etc.) antigens. Measurable CD8+ T cell responses elicited by model or viral antigens are always directed against epitopes possessing strong binding affinity for the restricting MHC I alleles. Immense collective effort to develop methodologies combining genomic sequencing, bioinformatics and traditional immunological techniques to identify neoepitopes with strong binding affinity to MHC I has only yielded inaccurate prediction algorithms. Additionally, new evidence has emerged suggesting that neoepitopes, which unlike the epitopes of viral or model antigens have closely resembling wild-type counterparts, may not necessarily demonstrate strong affinity to MHC I. Our bearing need recalibration.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Animais , Biomarcadores Tumorais , Vacinas Anticâncer/imunologia , Mapeamento de Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunomodulação , Mutação , Neoplasias/genética , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
Immunotherapy ; 9(4): 361-371, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28303769

RESUMO

Over the last half century, it has become well established that cancers can elicit a host immune response that can target them with high specificity. Only within the last decade, with the advances in high-throughput gene sequencing and bioinformatics approaches, are we now on the forefront of harnessing the host's immune system to treat cancer. Recently, some strides have been taken toward understanding effective tumor-specific MHC I restricted epitopes or neoepitopes. However, many fundamental questions still remain to be addressed before this therapy can live up to its full clinical potential. In this review, we discuss the major hurdles that lie ahead and the work being done to address them.


Assuntos
Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Biologia Computacional/tendências , Epitopos Imunodominantes/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Imunoterapia/tendências , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA