Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Data ; 11(1): 698, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926475

RESUMO

Major depressive disorder (MDD) and substance-use disorders (SUDs) often lead to premature aging, increasing vulnerability to cognitive decline and other forms of dementia. This study utilized advanced systems bioinformatics to identify aging "signatures" in MDD and SUDs and evaluated the potential for known lifespan-extending drugs to target and reverse these signatures. The results suggest that inhibiting the transcriptional activation of FOS gene family members holds promise in mitigating premature aging in MDD and SUDs. Conversely, antidepressant drugs activating the PI3K/Akt/mTOR pathway, a common mechanism in rapid-acting antidepressants, may accelerate aging in MDD patients, making them unsuitable for those with comorbid aging-related conditions like dementia and Alzheimer's disease. Additionally, this innovative approach identifies potential anti-aging interventions for MDD patients, such as Deferoxamine, Resveratrol, Estradiol valerate, and natural compounds like zinc acetate, genistein, and ascorbic acid, regardless of comorbid anxiety disorders. These findings illuminate the premature aging effects of MDD and SUDs and offer insights into treatment strategies for patients with comorbid aging-related conditions, including dementia and Alzheimer's disease.


Assuntos
Senilidade Prematura , Transtorno Depressivo Maior , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/genética , Senilidade Prematura/genética , Antidepressivos/uso terapêutico
2.
Front Endocrinol (Lausanne) ; 15: 1345498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689734

RESUMO

Background: The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods: We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results: The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion: These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.


Assuntos
Doença de Alzheimer , Perfilação da Expressão Gênica , Hipocampo , Caracteres Sexuais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Masculino , Feminino , Hipocampo/metabolismo , Transcriptoma , Idoso , Fatores Sexuais , Estudos de Casos e Controles
3.
Front Neurosci ; 18: 1348551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586193

RESUMO

Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERß), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.

4.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383863

RESUMO

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Assuntos
Carbono , Histonas , Animais , Camundongos , Histonas/metabolismo , Carbono/metabolismo , Lipogênese , Cromatina , Acetiltransferases/metabolismo , Lipídeos , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
5.
Pharmacol Biochem Behav ; 223: 173531, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36841543

RESUMO

Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.


Assuntos
Transtorno Depressivo Maior , Ketamina , Receptores de Glutamato Metabotrópico , Animais , Ketamina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Depressão/tratamento farmacológico
6.
J Neurosci ; 43(6): 1038-1050, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36596696

RESUMO

Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.


Assuntos
Ketamina , Masculino , Camundongos , Animais , Ketamina/farmacologia , N-Metilaspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Depressão/tratamento farmacológico , Antidepressivos/farmacologia
7.
Nat Neurosci ; 25(9): 1191-1200, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042309

RESUMO

We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.


Assuntos
Comportamento Animal , Ketamina , Pesquisadores , Caracteres Sexuais , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ketamina/farmacologia , Masculino , Camundongos , Neurônios/metabolismo
8.
Biol Psychiatry ; 92(3): 216-226, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120711

RESUMO

BACKGROUND: Abnormal reward processing, typically anhedonia, is a hallmark of human depression and is accompanied by altered functional connectivity in reward circuits. Negative allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors (GABA-NAMs) have rapid antidepressant-like properties in rodents and exert few adverse effects, but molecular targets underlying their behavioral and synaptic effects remain undetermined. We hypothesized that GABA-NAMs act at the benzodiazepine site of GABAA receptors containing α5 subunits to increase gamma oscillatory activity, strengthen synapses in reward circuits, and reverse anhedonia. METHODS: Anhedonia was induced by chronic stress in male mice and assayed by preferences for sucrose and female urine (n = 5-7 mice/group). Hippocampal slices were then prepared for electrophysiological recording (n = 1-6 slices/mouse, 4-6 mice/group). Electroencephalography power was quantified in response to GABA-NAM and ketamine administration (n = 7-9 mice/group). RESULTS: Chronic stress reduced sucrose and female urine preferences and hippocampal temporoammonic-CA1 synaptic strength. A peripheral injection of the GABA-NAM MRK-016 restored hedonic behavior and AMPA-to-NMDA ratios in wild-type mice. These actions were prevented by pretreatment with the benzodiazepine site antagonist flumazenil. MRK-016 administration increased gamma power over the prefrontal cortex in wild-type mice but not α5 knockout mice, whereas ketamine promoted gamma power in both genotypes. Hedonic behavior and AMPA-to-NMDA ratios were only restored by MRK-016 in stressed wild-type mice but not α5 knockout mice. CONCLUSIONS: α5-Selective GABA-NAMs exert rapid anti-anhedonic actions and restore the strength of synapses in reward regions by acting at the benzodiazepine site of α5-containing GABAA receptors. These results encourage human studies using GABA-NAMs to treat depression by providing readily translatable measures of target engagement.


Assuntos
Benzodiazepinas , Ketamina , Anedonia , Animais , Benzodiazepinas/farmacologia , Feminino , Humanos , Ketamina/farmacologia , Masculino , Camundongos , N-Metilaspartato , Receptores de GABA , Receptores de GABA-A/fisiologia , Sacarose , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Ácido gama-Aminobutírico
9.
iScience ; 24(9): 103048, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34585111

RESUMO

The postnatal period is critical for brain and behavioral development and is sensitive to environmental stimuli, such as nutrition. Prevention of weaning from maternal milk was previously shown to cause depressive-like behavior in rats. Additionally, loss of dietary casein was found to act as a developmental trigger for a population of brain opioid receptors. Here, we explore the effect of exposure to milk containing A1 and A2 ß-casein beyond weaning. A1 but not A2 ß-casein milk significantly increased stress-induced immobility in rats, concomitant with an increased abundance of Clostridium histolyticum bacterial group in the caecum and colon of A1 ß-casein fed animals, brain region-specific alterations of µ-opioid and oxytocin receptors, and modifications in urinary biochemical profiles. Moreover, urinary gut microbial metabolites strongly correlated with altered brain metabolites. These findings suggest that consumption of milk containing A1 ß-casein beyond weaning age may affect mood via a possible gut-brain axis mechanism.

10.
Pharmacol Rev ; 73(2): 763-791, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674359

RESUMO

Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.


Assuntos
Anestésicos , Ketamina , Antidepressivos/farmacologia , Depressão , Humanos , Ketamina/farmacologia , Transmissão Sináptica
11.
Psychopharmacology (Berl) ; 237(1): 93-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31422429

RESUMO

INTRODUCTION: Placebo effects in human clinical trials for depression treatment are robust and often comparable to drug effects. Placebo effects are traditionally difficult to study in rodents due to the slow-onset action of classical antidepressant drugs. We hypothesized that the rapid antidepressant actions of ketamine would allow modeling antidepressant placebo effects in rodents. METHODS: Male and female CD-1 mice received either ketamine or saline injections with concomitant exposure to specific environmental conditioning stimuli, for a total of three drug/conditioning sessions each 2 weeks apart. Two weeks later, during an evocation phase, mice were exposed to the drug-paired conditioning stimuli or no conditioned stimuli followed by testing for motor stimulatory actions and antidepressant-like effects using the forced swim test. Negative (no ketamine administration at any time) and positive (acute ketamine administration prior to evocation testing) control groups were included as comparators. RESULTS: Both male and female mice exhibited increased locomotor activity following ketamine administration during the conditioning phase, which was not observed following exposure to the conditioning stimuli. Exposure to the conditioning stimuli previously paired with ketamine, similar to an acute ketamine administration, reduced immobility time in the forced swim test both 1 and 24 h after administration in male, but not female, mice. CONCLUSIONS: These results represent the first evidence of antidepressant-like placebo-conditioned effects in an animal model. The developed approach can be used as a model to explore the neurobiological mechanisms of placebo effects, their possible sexually dimorphic effects, and relevance to mechanisms underlying antidepressant action.


Assuntos
Antidepressivos/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Ketamina/farmacologia , Animais , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Feminino , Ketamina/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Efeito Placebo , Natação
12.
Neuropsychopharmacology ; 44(10): 1788-1796, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30939596

RESUMO

Stress is a leading risk factor for the onset and recurrence of major depression. Enhancing stress resilience may be a therapeutic strategy to prevent the development of depression in at-risk populations or its recurrence in depressed patients. Group II metabotropic glutamate receptor (mGlu2/3) antagonists have been recognized for antidepressant-like actions in preclinical models, but have not been evaluated for prophylactic effects. We assessed the role of mGlu2/3 in modulating stress resilience using subtype-specific knockout mice lacking mGlu2 (Grm2-/-) or mGlu3 (Grm3-/-), and pharmacological manipulations of mGlu2/3 activity during or prior to the induction and reinstatement of stress-induced behavioral deficits. Grm2-/-, but not Grm3-/-, mice exhibited reduced forced-swimming test immobility time and were resilient to developing inescapable shock (IES)-induced escape deficits. Grm2-/- mice were also resilient to developing corticosterone (CORT)-induced escape deficits and chronic social defeat stress-induced anhedonia. Pharmacological blockade of mGlu2/3 with the antagonist LY341495 during stress prevented the development of IES- and CORT-induced escape deficits, while activation with the agonist LY379268 increased susceptibility to escape deficits. Prophylactic treatment with the LY341495, both systemically and via microinjection into the medial prefrontal cortex (mPFC), up to 7 days before IES, prevented both the induction of escape deficits and their reinstatement by brief re-exposure to IES up to 20 days after treatment. Overall, blockade of mGlu2/3 enhanced stress resilience and deletion of mGlu2, but not mGlu3, conferred a stress-resilient phenotype, indicating that prophylactic treatments reducing mGlu2 activity may protect against stress-induced changes underlying the development or recurrence of stress-induced disorders, including depression.


Assuntos
Receptores de Glutamato Metabotrópico/genética , Resiliência Psicológica , Aminoácidos/farmacologia , Anedonia/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Corticosterona/farmacologia , Eletrochoque , Reação de Fuga/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Camundongos Knockout , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Resiliência Psicológica/efeitos dos fármacos , Estresse Psicológico , Xantenos/farmacologia
13.
Br J Pharmacol ; 176(14): 2573-2592, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941749

RESUMO

BACKGROUND AND PURPOSE: (R)-Ketamine (arketamine) may have utility as a rapidly acting antidepressant. While (R)-ketamine has lower potency than (R,S)-ketamine to inhibit NMDA receptors in vitro, the extent to which (R)-ketamine shares the NMDA receptor-mediated adverse effects of (R,S)-ketamine in vivo has not been fully characterised. Furthermore, (R)-ketamine is metabolised to (2R,6R)-hydroxynorketamine (HNK), which may contribute to its antidepressant-relevant actions. EXPERIMENTAL APPROACH: Using mice, we compared (R)-ketamine with a deuterated form of the drug (6,6-dideutero-(R)-ketamine, (R)-d2 -ketamine), which hinders its metabolism to (2R,6R)-HNK, in behavioural tests predicting antidepressant responses. We also examined the actions of intracerebroventricularly infused (2R,6R)-HNK. Further, we quantified putative NMDA receptor inhibition-mediated adverse effects of (R)-ketamine. KEY RESULTS: (R)-d2 -Ketamine was identical to (R)-ketamine in binding to and functionally inhibiting NMDA receptors but hindered (R)-ketamine's metabolism to (2R,6R)-HNK. (R)-Ketamine exerted greater potency than (R)-d2 -ketamine in several antidepressant-sensitive behavioural measures, consistent with a role of (2R,6R)-HNK in the actions of (R)-ketamine. There were dose-dependent sustained antidepressant-relevant actions of (2R,6R)-HNK following intracerebroventricular administration. (R)-Ketamine exerted NMDA receptor inhibition-mediated behaviours similar to (R,S)-ketamine, including locomotor stimulation, conditioned-place preference, prepulse inhibition deficits, and motor incoordination, with approximately half the potency of the racemic drug. CONCLUSIONS AND IMPLICATIONS: Metabolism of (R)-ketamine to (2R,6R)-HNK increases the potency of (R)-ketamine to exert antidepressant-relevant actions in mice. Adverse effects of (R)-ketamine require higher doses than those necessary for antidepressant-sensitive behavioural changes in mice. However, our data revealing that (R)-ketamine's adverse effects are elicited at sub-anaesthetic doses indicate a potential risk for sensory dissociation and abuse liability.


Assuntos
Anestésicos/efeitos adversos , Antidepressivos/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Ketamina/efeitos adversos , Anestésicos/química , Anestésicos/metabolismo , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Infusões Intraventriculares , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Estereoisomerismo
14.
Proc Natl Acad Sci U S A ; 116(13): 6441-6450, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867285

RESUMO

Currently approved antidepressant drugs often take months to take full effect, and ∼30% of depressed patients remain treatment resistant. In contrast, ketamine, when administered as a single subanesthetic dose, exerts rapid and sustained antidepressant actions. Preclinical studies indicate that the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a rapid-acting antidepressant drug candidate with limited dissociation properties and abuse potential. We assessed the role of group II metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) in the antidepressant-relevant actions of (2R,6R)-HNK using behavioral, genetic, and pharmacological approaches as well as cortical quantitative EEG (qEEG) measurements in mice. Both ketamine and (2R,6R)-HNK prevented mGlu2/3 receptor agonist (LY379268)-induced body temperature increases in mice lacking the Grm3, but not Grm2, gene. This action was not replicated by NMDA receptor antagonists or a chemical variant of ketamine that limits metabolism to (2R,6R)-HNK. The antidepressant-relevant behavioral effects and 30- to 80-Hz qEEG oscillation (gamma-range) increases resultant from (2R,6R)-HNK administration were prevented by pretreatment with an mGlu2/3 receptor agonist and absent in mice lacking the Grm2, but not Grm3-/-, gene. Combined subeffective doses of the mGlu2/3 receptor antagonist LY341495 and (2R,6R)-HNK exerted synergistic increases on gamma oscillations and antidepressant-relevant behavioral actions. These findings highlight that (2R,6R)-HNK exerts antidepressant-relevant actions via a mechanism converging with mGlu2 receptor signaling and suggest enhanced cortical gamma oscillations as a marker of target engagement relevant to antidepressant efficacy. Moreover, these results support the use of (2R,6R)-HNK and inhibitors of mGlu2 receptor function in clinical trials for treatment-resistant depression either alone or in combination.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Ketamina/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Aminoácidos/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/antagonistas & inibidores , Modelos Animais de Doenças , Resistência a Medicamentos , Feminino , Febre , Ketamina/administração & dosagem , Ketamina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
15.
Front Psychiatry ; 10: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863326

RESUMO

Fluctuating hormone levels, such as estradiol might underlie the difference in the prevalence of psychiatric disorders observed in women vs. men. Estradiol exert its effects primarily through binding on the two classical estrogen receptor subtypes, alpha (ERα) and beta (ERß). Both receptors have been suggested to a have role in the development of psychiatric disorders, however, most of the current literature is limited to their role in females. We investigated the role of estrogen receptors on cognition (novel-object recognition), anxiety (open-field test, elevated-plus maze, and light/dark box), stress-responsive behaviors (forced-swim test, learned helplessness following inescapable shock, and sucrose preference), pre-pulse inhibition (PPI) and amphetamine-induced hyperlocomotion in both male and female mice either lacking the ERα or ERß receptor. We found that female Esr1 -/- mice have attenuated pre-pulse inhibition, whereas female Esr2 -/- mice manifested enhanced pre-pulse inhibition. No pre-pulse inhibition difference was observed in male Esr1 -/- and Esr2 -/- mice. Moreover, amphetamine-induced hyperlocomotion was decreased in male Esr1 -/-, but not Esr2 -/- mice, while female Esr1 -/- and Esr2 -/- mice showed an enhanced response. Genetic absence of ERα did not alter the escape capability or sucrose preference following inescapable shock in both male and female mice. In contrast, female, but not male Esr2 -/- mice, manifested decreased escape failures compared with controls. Lack of Esr2 gene in male mice was associated with decreased sucrose preference following inescapable shock, suggesting susceptibility for development of anhedonia following stress. No sucrose preference differences were found in female Esr2 -/- mice following inescapable shock stress. Lastly, we demonstrated that lack of Esr1 or Esr2 genes had no effect on memory and anxiety-like behaviors in both male and female mice. Our findings indicate a differential sex-specific involvement of estrogen receptors in the development of stress-mediated maladaptive behaviors as well as psychomotor activation responses suggesting that these receptors might act as potential treatment targets in a sex-specific manner.

16.
Addict Biol ; 24(4): 590-603, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29667304

RESUMO

Recurrent relapse is a major problem in treating opiate addiction. Pavlovian conditioning plays a role in recurrent relapse whereby exposure to cues learned during drug intake can precipitate relapse to drug taking. α7 nicotinic acetylcholine receptors (nAChRs) have been implicated in attentional aspects of cognition and mechanisms of learning and memory. In this study we have investigated the role of α7 nAChRs in morphine-conditioned place preference (morphine-CPP). CPP provides a model of associative learning that is pertinent to associative aspects of drug dependence. The α7 nAChR antagonist methyllycaconitine (MLA; 4 mg/kg s.c.) had no effect on the acquisition, maintenance, reconsolidation or extinction of morphine-CPP but selectively attenuated morphine-primed reinstatement of CPP, in both mice and rats. Reinstatement of morphine-CPP in mice was accompanied by a selective increase in [3 H]-AMPA binding (but not in [3 H]-MK801 binding) in the ventral hippocampus that was prevented by prior treatment with MLA. Administration of MLA (6.7 µg) directly into the ventral hippocampus of rats prior to a systemic priming dose of morphine abolished reinstatement of morphine-CPP, whereas MLA delivered into the dorsal hippocampus or prefrontal cortex was without effect. These results suggest that α7 nAChRs in the ventral hippocampus play a specific role in the retrieval of associative drug memories following a period of extinction, making them potential targets for the prevention of relapse.


Assuntos
Aconitina/análogos & derivados , Analgésicos Opioides , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Morfina , Antagonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Aconitina/farmacologia , Animais , Maleato de Dizocilpina/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Hipocampo/metabolismo , Camundongos , Transtornos Relacionados ao Uso de Opioides , Ratos , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Recidiva , Trítio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
17.
Eur J Neurosci ; 50(3): 2255-2263, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30218618

RESUMO

Nicotine dependence and schizophrenia are two mental health disorders with remarkably high comorbidity. Cigarette smoking is particularly prevalent amongst schizophrenic patients and it is hypothesised to comprise a form of self-medication for relieving cognitive deficits in these patients. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin in the modulation of drug addiction, as well as schizophrenia symptomology; however, the underlying mechanism remains unclear. Therefore, we sought to investigate the effects of chronic nicotine administration on oxytocin receptor (OTR) binding in the brain of a transgenic mouse model of schizophrenia that carries a bacterial artificial chromosome of the human G72/G30 locus (G72Tg). Female wild-type (WT) and heterozygous G72 transgenic CD-1 mice were treated with a chronic nicotine regimen (24 mg/kg/day, osmotic minipumps for 14 days) and quantitative autoradiographic mapping of oxytocin receptors was carried out in brains of these animals. OTR binding levels were higher in the cingulate cortex (CgCx), nucleus accumbens (Acb), and central amygdala (CeA) of saline treated G72Tg mice compared to WT control mice. Chronic nicotine administration reversed this upregulation in the CgCx and CeA. Interestingly, chronic nicotine administration induced an increase in OTR binding in the CeA of solely WT mice. These results indicate that nicotine administration normalises the dysregulated central oxytocinergic system of this mouse model of schizophrenia and may contribute towards nicotine's ability to modulate cognitive deficits which are common symptoms of schizophrenia.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nicotina/administração & dosagem , Receptores de Ocitocina/metabolismo , Esquizofrenia/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Ocitocina/genética , Esquizofrenia/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
18.
Pharmacol Rev ; 70(3): 621-660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29945898

RESUMO

Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.


Assuntos
Analgésicos/farmacologia , Anestésicos/farmacologia , Antidepressivos/farmacologia , Ketamina/análogos & derivados , Ketamina/farmacologia , Analgésicos/uso terapêutico , Anestésicos/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Humanos , Ketamina/uso terapêutico
19.
Neuropharmacology ; 138: 267-274, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29908241

RESUMO

Environmental conditions, such as stress and environmental enrichment (EE), influence predisposition to alcohol use/abuse; however, the underlying mechanisms remain unknown. To assess the effect of environmental conditions on the initial rewarding effects of alcohol, we examined conditioned place-preference (CPP) to alcohol following exposure to EE in mice. Since social context is a major factor contributing to initial alcohol-drinking, we also assessed the impact of EE on the levels of the "social neuropeptide" oxytocin (OT) and its receptor, OTR. Finally, we assessed the effect of pharmacological manipulations of the oxytocinergic system on EE-induced alcohol CPP. While EE increased sociability and reduced anxiety-like behaviors, it caused a ∼3.5-fold increase in alcohol reward compared to controls. EE triggered profound neuroadaptations of the oxytocinergic system; it increased hypothalamic OT levels and decreased OTR binding in the prefrontal cortex and olfactory nuclei of the brain. Repeated administration of the OT analogue carbetocin (6.4 mg/kg/day) mimicked the behavioral effects of EE on ethanol CPP and induced similar brain region-specific alterations of OTR binding as those observed following EE. Conversely, repeated administration of the OTR antagonist L,369-899 (5 mg/kg/day) during EE exposure, but not during the acquisition of alcohol CPP, reversed the pronounced EE-induced ethanol rewarding effect. These results demonstrate for the first time, a stimulatory effect of environmental enrichment exposure on alcohol reward via an oxytocinergic-dependent mechanism, which may predispose to alcohol abuse. This study offers a unique prospective on the neurobiological understanding of the initial stages of alcohol use/misuse driven by complex environmental-social interplay.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Encéfalo/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Meio Ambiente , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Transtornos Relacionados ao Uso de Álcool/psicologia , Animais , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Etanol/farmacologia , Abrigo para Animais , Camundongos , Ocitocina/análogos & derivados , Ocitocina/farmacologia , Receptores de Ocitocina/antagonistas & inibidores , Recompensa , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
20.
Sci Rep ; 8(1): 9813, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955078

RESUMO

Impairment of neuronal proteostasis is a hallmark of Alzheimer's and other neurodegenerative diseases. However, the underlying molecular mechanisms leading to pathogenic protein aggregation, and the role of secretory chaperone proteins in this process, are poorly understood. We have previously shown that the neural-and endocrine-specific secretory chaperone 7B2 potently blocks in vitro fibrillation of Aß42. To determine whether 7B2 can function as a chaperone in vivo, we measured plaque formation and performed behavioral assays in 7B2-deficient mice in an hAPPswe/PS1dE9 Alzheimer's model mouse background. Surprisingly, immunocytochemical analysis of cortical levels of thioflavin S- and Aß-reactive plaques showed that APP mice with a partial or complete lack of 7B2 expression exhibited a significantly lower number and burden of thioflavin S-reactive, as well as Aß-immunoreactive, plaques. However, 7B2 knockout did not affect total brain levels of either soluble or insoluble Aß. While hAPP model mice performed poorly in the Morris water maze, their brain 7B2 levels did not impact performance. Since 7B2 loss reduced amyloid plaque burden, we conclude that brain 7B2 can impact Aß disposition in a manner that facilitates plaque formation. These results are reminiscent of prior findings in hAPP model mice lacking the ubiquitous secretory chaperone clusterin.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteína Secretora Neuroendócrina 7B2/deficiência , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Animais , Benzotiazóis/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Clusterina/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Heterozigoto , Humanos , Memória , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Secretora Neuroendócrina 7B2/genética , Proteína Secretora Neuroendócrina 7B2/metabolismo , Placa Amiloide/imunologia , Placa Amiloide/fisiopatologia , Solubilidade , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA