Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Magn Reson Med ; 73(6): 2069-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24962369

RESUMO

PURPOSE: Proton magnetic resonance spectroscopy ((1) H-MRS) for quantitative in vivo assessment of mouse myocardial metabolism requires accurate acquisition timing to minimize motion artifacts and corrections for T1 -dependent partial saturation effects. In this study, mouse myocardial water and metabolite T1 relaxation time constants were quantified. METHODS: Cardiac-triggered and respiratory-gated PRESS-localized (1) H-MRS was employed at 9.4 T to acquire signal from a 4-µL voxel in the septum of healthy mice (n = 10) while maintaining a steady state of magnetization using dummy scans during respiratory gates. Signal stability was assessed via standard deviations (SD) of zero-order phases and amplitudes of water spectra. Saturation-recovery experiments were performed to determine T1 values. RESULTS: Phase SD did not vary for different repetition times (TR), and was 13.1° ± 4.5°. Maximal amplitude SD was 14.2% ± 5.1% at TR = 500 ms. Myocardial T1 values (mean ± SD) were quantified for water (1.71 ± 0.25 s), taurine (2.18 ± 0.62 s), trimethylamine from choline-containing compounds and carnitine (1.67 ± 0.25 s), creatine-methyl (1.34 ± 0.19 s), triglyceride-methylene (0.60 ± 0.15 s), and triglyceride-methyl (0.90 ± 0.17 s) protons. CONCLUSION: This work provides in vivo quantifications of proton T1 values for mouse myocardial water and metabolites at 9.4 T.


Assuntos
Miocárdio/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Técnicas de Imagem de Sincronização Cardíaca , Eletrocardiografia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Imagem de Sincronização Respiratória
2.
Magn Reson Med ; 72(1): 188-201, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23943090

RESUMO

PURPOSE: Atherosclerotic carotid plaques can be quantified in vivo by MRI. However, the accuracy in segmentation and quantification of components such as the thin fibrous cap (FC) and lipid-rich necrotic core (LRNC) remains unknown due to the lack of a submillimeter scale ground truth. METHODS: A novel approach was taken by numerically simulating in vivo carotid MRI providing a ground truth comparison. Upon evaluation of a simulated clinical protocol, MR readers segmented simulated images of cross-sectional plaque geometries derived from histological data of 12 patients. RESULTS: MR readers showed high correlation (R) and intraclass correlation (ICC) in measuring the luminal area (R = 0.996, ICC = 0.99), vessel wall area (R = 0.96, ICC = 0.94) and LRNC area (R = 0.95, ICC = 0.94). LRNC area was underestimated (mean error, -24%). Minimum FC thickness showed a mediocre correlation and intraclass correlation (R = 0.71, ICC = 0.69). CONCLUSION: Current clinical MRI can quantify carotid plaques but shows limitations for thin FC thickness quantification. These limitations could influence the reliability of carotid MRI for assessing plaque rupture risk associated with FC thickness. Overall, MRI simulations provide a feasible methodology for assessing segmentation and quantification accuracy, as well as for improving scan protocol design.


Assuntos
Doenças das Artérias Carótidas/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Placa Aterosclerótica/diagnóstico , Simulação por Computador , Meios de Contraste , Humanos , Lipídeos/análise , Necrose , Compostos Organometálicos , Razão Sinal-Ruído
3.
Magn Reson Med ; 68(4): 997-1006, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22213012

RESUMO

Excess accumulation of lipids in nonadipose tissues such as skeletal muscle and liver has been implicated in the development of obesity-related disorders, but the cause of this ectopic lipid overload remains unknown. The aim of this study was to determine in vivo postprandial lipid partitioning in rat skeletal muscle and liver, using localized 1H-[13C] magnetic resonance spectroscopy in combination with the oral administration of 13C-labeled lipids. Six rats were measured at baseline and 5 and 24 h after administration of 400 mg [U-13C]-labeled algal lipids. Five hours after administration, fractional 13C enrichments of the lipid pools in muscle and liver were increased 3.9-fold and 4.6-fold (P<0.05), respectively, indicating that part of the ingested lipids had been taken up by muscle and liver tissue. At 24 h, fractional 13C enrichments of muscle and liver lipids were decreased 1.6-fold and 2.2-fold (P<0.05), respectively, compared with the 5 h values. This can be interpreted as a depletion of 13C-labeled lipids from the intracellular lipid pools as a consequence of lipid turnover. In conclusion, the novel application of 1H-[13C] magnetic resonance spectroscopy in combination with the oral administration of 13C-labeled lipids is applicable for the longitudinal assessment of in vivo lipid partitioning between multiple tissues.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Período Pós-Prandial/fisiologia , Animais , Isótopos de Carbono/análise , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos/fisiologia , Prótons , Ratos , Ratos Wistar , Distribuição Tecidual
4.
Circ Cardiovasc Imaging ; 4(5): 558-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21737602

RESUMO

BACKGROUND: Lipotoxicity may be a key contributor to the pathogenesis of cardiac abnormalities in mitochondrial long-chain fatty acid ß-oxidation (FAO) disorders. Few data are available on myocardial lipid levels and cardiac performance in FAO deficiencies. The purpose of this animal study is to assess fasting-induced changes in cardiac morphology, function, and triglyceride (TG) storage as a consequence of FAO deficiency in a noninvasive fashion. METHODS AND RESULTS: MRI and proton magnetic resonance spectroscopy ((1)H-MRS) were applied in vivo in long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mice and wild-type (WT) mice (n=8 per genotype). Fasting was used to increase the heart's dependency on FAO for maintenance of energy homeostasis. In vivo data were complemented with ex vivo measurements of myocardial lipids. Left ventricular (LV) mass was higher in LCAD KO mice compared with WT mice (P<0.05), indicating LV myocardial hypertrophy. Myocardial TG content was higher in LCAD KO mice at baseline (P<0.001) and further increased in fasted LCAD KO mice (P<0.05). Concomitantly, LV ejection fraction (P<0.01) and diastolic filling rate (P<0.01) decreased after fasting, whereas these functional parameters did not change in fasted WT mice. Myocardial ceramide content was higher in fasted LCAD KO mice compared with fasted WT mice (P<0.05). CONCLUSIONS: Using a noninvasive approach, this study reveals accumulation of myocardial TG in LCAD KO mice. Toxicity of accumulating lipid metabolites such as ceramides may be responsible for the fasting-induced impairment of cardiac function observed in the LCAD KO mouse.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Jejum/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Cardíacas/metabolismo , Triglicerídeos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Seguimentos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA