Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 89(9): 698-707, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23607438

RESUMO

PURPOSE: Biological effects produced by low doses of ionizing radiations, though relevant for the risk assessment, have not been fully elucidated. The aim of the present work was to evaluate cytogenetic endpoints, as telomere dysfunctions and chromosome instability in the low-dose range as a function of radiation quality. In particular, we analyzed whether the telomere length was modulated, as well as the involvement of telomeres in chromosomal alterations at anaphase, and the yield of stable simple and complex chromosome aberrations. MATERIALS AND METHODS: AG01522 human primary fibroblasts were irradiated with 0.1-1 Gy of X-rays, protons (28.5 keV/µm), and 4He(2+) ions (62 keV/µm). Frequency of chromosome bridges carrying or not telomeric signals and telomere length were measured in irradiated samples up to 72 h. Moreover, chromosome instability was measured using multicolor fluorescence in situ hybridization (mFISH). RESULTS: The results evidenced a linear energy transfer (LET)- and dose-dependent response in the frequency of anaphase bridges induction and in their persistence as a function of time. However, neither variation in telomere length and telomere loss, nor in the proportion of bridges bearing telomeric signals, was detected, thus indicating a minor role of telomeres in the generation of the radiation-induced chromosome bridges. Chromosome instability followed a linear-dependence with dose and LET, showing a far higher extent of complex translocations in helium-ion-irradiated cells than in proton- or X-ray-irradiated samples. CONCLUSIONS: Altogether, the results indicated the lack of telomere involvement in cytogenetic effects induced by low-dose ionizing radiation. On the contrary, chromosome aberration yield and spectrum were LET- and dose-dependent.


Assuntos
Aberrações Cromossômicas , Telômero/efeitos da radiação , Anáfase , Células Cultivadas , Citogenética , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Humanos , Transferência Linear de Energia
2.
Environ Mol Mutagen ; 54(3): 172-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401031

RESUMO

Telomere integrity is important for chromosome stability. The main objective of our study was to investigate the relationship between telomere length modulation and mitotic chromosome segregation induced by ionizing radiation in human primary fibroblasts. We used X-rays and low-energy protons because of their ability to induce different telomeric responses. Samples irradiated with 4 Gy were fixed at different times up to 6 days from exposure and telomere length, anaphase abnormalities, and chromosome aberrations were analyzed. We observed that X-rays induced telomere shortening in cells harvested at 96 hrs, whereas protons induced a significant increase in telomere length at short as well as at long harvesting times (24 and 96 hrs). Consistent with this, the analysis of anaphase bridges at 96 hrs showed a fourfold increase in X-ray- compared with proton-irradiated samples, suggesting a correlation between telomere length/dysfunction and chromosome missegregation. In line with these findings, the frequency of dicentrics and rings decreased with time for protons whereas it remained stable after X-rays irradiation. Telomeric FISH staining on anaphases revealed a higher percentage of bridges with telomere signals in X-ray-treated samples than that observed after proton irradiation, thus suggesting that the aberrations observed after X-ray irradiation originated from telomere attrition and consequent chromosome end-to-end fusion. This study shows that, beside an expected "early" chromosome instability induced shortly after irradiation, a delayed one occurs as a result of alterations in telomere metabolism and that this mechanism may play an important role in genomic stability.


Assuntos
Instabilidade Cromossômica/efeitos da radiação , Fibroblastos/efeitos da radiação , Homeostase do Telômero/efeitos da radiação , Encurtamento do Telômero/efeitos da radiação , Telômero/efeitos da radiação , Anáfase/efeitos da radiação , Linhagem Celular , Relação Dose-Resposta à Radiação , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Prótons , Telômero/ultraestrutura , Raios X
3.
Radiat Prot Dosimetry ; 143(2-4): 353-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21186223

RESUMO

Irradiation of individual cultured mammalian cells with a pre-selected number of ions down to one ion per single cell is a useful experimental approach to investigating the low-dose ionising radiation exposure effects and thus contributing to a more realistic human cancer risk assessment. One of the crucial tasks of all the microbeam apparatuses is the visualisation, recognition and positioning of every individual cell of the cell culture to be irradiated. Before irradiations, mammalian cells (specifically, Chinese hamster V79 cells) are seeded and grown as a monolayer on a mylar surface used as the bottom of a specially designed holder. Manual recognition of unstained cells in a bright-field microscope is a time-consuming procedure; therefore, a parallel algorithm has been conceived and developed in order to speed up this irradiation protocol step. Many technical problems have been faced to overcome the complexity of the images to be analysed: cell discrimination in an inhomogeneous background, among many disturbing bodies mainly due to the mylar surface roughness and culture medium bodies; cell shapes, depending on how they attach to the surface, which phase of the cell cycle they are in and on cell density. Preliminary results of the recognition and classification based on a method of wavelet kernels for the support vector machine classifier will be presented.


Assuntos
Algoritmos , Inteligência Artificial , Fibroblastos/citologia , Fibroblastos/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Reconhecimento Automatizado de Padrão/métodos , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Cricetinae , Cricetulus , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Ondaletas
4.
J Radiat Res ; 50(5): 457-68, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19755805

RESUMO

The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efeitos da radiação , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Raios gama , Humanos , Prótons , Doses de Radiação , Raios X
5.
J Radiat Res ; 50 Suppl A: A13-20, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19346681

RESUMO

A growing body of experimental evidence gathered in the last 10-15 years with regard to targeted and non-targeted effects of low doses of ionizing radiation (hyper-radiosensitivity, induced radio-resistance, adaptive response, genomic instability, bystander effects) has pushed the radiobiology research towards a better understanding of the mechanisms underlying these phenomena, the extent to which they are active in-vivo, and how they are inter-related. In such a way factors could be obtained and included in the estimation of potential cancer risk to the human population of exposure to low levels of ionizing radiation. Different experimental approaches have been developed and employed to study such effects in-vitro (medium transfer experiments; broad-field irradiation at low doses also with insert or shielding systems...). In this regard, important contributions came from ionizing radiation microbeam facilities that turn to be powerful tools to perform selective irradiations of individual cells inside a population with an exact, defined and reproducible dose (i.e. number of particles, in case of charged particle microbeams). Over the last 20 years the use of microbeams for radiobiological applications increased substantially and a continuously growing number of such facilities, providing X-rays, electrons, light and heavy ions, has been developing all over the world. Nowadays, just in Europe there are 12 microbeam facilities fully-operational or under-development, out of more than 30 worldwide. An overview of the European microbeam facilities for radiobiological studies is presented and discussed in this paper.


Assuntos
Bioensaio/instrumentação , Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Técnicas de Cultura de Células/instrumentação , Relação Dose-Resposta à Radiação , Radiobiologia/instrumentação , Animais , Bioensaio/métodos , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Europa (Continente) , Humanos , Doses de Radiação , Radiobiologia/métodos
6.
J Radiat Res ; 49(6): 597-607, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18987438

RESUMO

This work aimed at measuring cell-killing effectiveness of monoenergetic and Spread-Out Bragg Peak (SOBP) carbon-ion beams in normal and tumour cells with different radiation sensitivity. Clonogenic survival was assayed in normal and tumour human cell lines exhibiting different radiosensitivity to X- or gamma-rays following exposure to monoenergetic carbon-ion beams (incident LET 13-303 keV/microm) and at various positions along the ionization curve of a therapeutic carbon-ion beam, corresponding to three dose-averaged LET (LET(d)) values (40, 50 and 75 keV/microm). Chinese hamster V79 cells were also used. Carbon-ion effectiveness for cell inactivation generally increased with LET for monoenergetic beams, with the largest gain in cell-killing obtained in the cells most radioresistant to X- or gamma-rays. Such an increased effectiveness in cells less responsive to low LET radiation was found also for SOBP irradiation, but the latter was less effective compared with monoenergetic ion beams of the same LET. Our data show the superior effectiveness for cell-killing exhibited by carbon-ion beams compared to lower LET radiation, particularly in tumour cells radioresistant to X- or gamma-rays, hence the advantage of using such beams in radiotherapy. The observed lower effectiveness of SOBP irradiation compared to monoenergetic carbon beam irradiation argues against the radiobiological equivalence between dose-averaged LET in a point in the SOBP and the corresponding monoenergetic beams.


Assuntos
Apoptose/efeitos da radiação , Isótopos de Carbono , Sobrevivência Celular/efeitos da radiação , Íons Pesados , Neoplasias/patologia , Neoplasias/fisiopatologia , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação , Espalhamento de Radiação
7.
Radiat Res ; 164(4 Pt 2): 586-90, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16187793

RESUMO

Charged-particle microbeams are unique tools to mimic low-dose exposure in vitro by delivering a defined number of particles to single mammalian cells down to only one particle per cell or group of cells. A horizontal single-ion microbeam facility has been built at the INFN-Laboratori Nazionali di Legnaro 7 MV Van de Graaff accelerator. Different light ions (1H+, 2H+, 3He2+, 4He2+) are available covering a wide range of LET from 7 to 150 keV/microm. Collimators of different geometries and materials have been tested, and beam spots 2-3 microm in diameter have been obtained using a tantalum disc. Cell visualization and recognition are performed with a phase-contrast optical microscope coupled with dedicated software. One unique characteristic of such a system is that neither cell staining nor UV light is used. Cells are automatically positioned on the beam spot through remotely controlled precision XY translation stages. A particle detector is positioned downstream of a specially designed petri dish to perform energy measurements and count particles crossing the cell. A particle counting rate of less than 1 ion/s can be reached. This feature, combined with a fast beam deflection system, ensures high reproducibility in administering a preset number of particles per cell.


Assuntos
Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA