Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(3): 1294-1312, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434270

RESUMO

Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.


Assuntos
Cromatina/química , Cromossomos Fúngicos , Mitose/genética , Schizosaccharomyces/genética , Adenosina Trifosfatases/análise , Simulação por Computador , Proteínas de Ligação a DNA/análise , Difusão , Modelos Genéticos , Modelos Moleculares , Complexos Multiproteicos/análise
2.
Genome Biol ; 21(1): 272, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153481

RESUMO

BACKGROUND: Structural maintenance of chromosomes (SMC) complexes are central organizers of chromatin architecture throughout the cell cycle. The SMC family member condensin is best known for establishing long-range chromatin interactions in mitosis. These compact chromatin and create mechanically stable chromosomes. How condensin contributes to chromatin organization in interphase is less well understood. RESULTS: Here, we use efficient conditional depletion of fission yeast condensin to determine its contribution to interphase chromatin organization. We deplete condensin in G2-arrested cells to preempt confounding effects from cell cycle progression without condensin. Genome-wide chromatin interaction mapping, using Hi-C, reveals condensin-mediated chromatin interactions in interphase that are qualitatively similar to those observed in mitosis, but quantitatively far less prevalent. Despite their low abundance, chromatin mobility tracking shows that condensin markedly confines interphase chromatin movements. Without condensin, chromatin behaves as an unconstrained Rouse polymer with excluded volume, while condensin constrains its mobility. Unexpectedly, we find that condensin is required during interphase to prevent ongoing transcription from eliciting a DNA damage response. CONCLUSIONS: In addition to establishing mitotic chromosome architecture, condensin-mediated long-range chromatin interactions contribute to shaping chromatin organization in interphase. The resulting structure confines chromatin mobility and protects the genome from transcription-induced DNA damage. This adds to the important roles of condensin in maintaining chromosome stability.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Interfase , Complexos Multiproteicos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cromossomos Fúngicos/metabolismo , Mitose , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Proteins ; 88(8): 962-972, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31697436

RESUMO

The formation of specific protein-protein interactions is often a key to a protein's function. During complex formation, each protein component will undergo a change in the conformational state, for some these changes are relatively small and reside primarily at the sidechain level; however, others may display notable backbone adjustments. One of the classic problems in the protein-docking field is to be able to a priori predict the extent of such conformational changes. In this work, we investigated three protocols to find the most suitable input structure conformations for cross-docking, including a robust sampling approach in normal mode space. Counterintuitively, knowledge of the theoretically best combination of normal modes for unbound-bound transitions does not always lead to the best results. We used a novel spatial partitioning library, Aether Engine (see Supplementary Materials), to efficiently search the conformational states of 56 receptor/ligand pairs, including a recent CAPRI target, in a systematic manner and selected diverse conformations as input to our automated docking server, SwarmDock, a server that allows moderate conformational adjustments during the docking process. In essence, here we present a dynamic cross-docking protocol, which when benchmarked against the simpler approach of just docking the unbound components shows a 10% uplift in the quality of the top docking pose.


Assuntos
Simulação de Acoplamento Molecular , Receptores de Superfície Celular/química , Software , Sequência de Aminoácidos , Benchmarking , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína
4.
Proteins ; 87(12): 1200-1221, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612567

RESUMO

We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Sítios de Ligação/genética , Bases de Dados de Proteínas , Modelos Moleculares , Ligação Proteica/genética , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Homologia Estrutural de Proteína
5.
PLoS One ; 13(9): e0202989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192788

RESUMO

Tooth agenesis is one of the most common craniofacial disorders in humans. More than 350 genes have been associated with teeth development. In this study, we enrolled 60 child patients (age 13 to 17) with various types of tooth agenesis. Whole gene sequences of PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes were sequenced by next generation sequencing on the Illumina MiSeq platform. We found previously undescribed heterozygous nonsense mutation g.8177G>T (c.610G>T) in MSX1 gene in one child. Mutation was verified by Sanger sequencing. Sequencing analysis was performed in other family members of the affected child. All family members carrying g.8177G>T mutation suffered from oligodontia (missing more than 6 teeth excluding third molars). Mutation g.8177G>T leads to a stop codon (p.E204X) and premature termination of Msx1 protein translation. Based on previous in vitro experiments on mutation disrupting function of Msx1 homeodomain, we assume that the heterozygous g.8177G>T nonsense mutation affects the amount and function of Msx1 protein and leads to tooth agenesis.


Assuntos
Anodontia/genética , Códon sem Sentido , Fator de Transcrição MSX1/genética , Adolescente , Anodontia/patologia , Família , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Unhas Malformadas , Linhagem
6.
J Biomed Sci ; 25(1): 41, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759072

RESUMO

BACKGROUND: Cholinergic hypothesis of Alzheimer's disease (AD) is based on the findings that a reduced and/or perturbed cholinergic activity in the central nervous system correlates with cognitive decline in patients with Alzheimer's disease. The hypothesis resulted in the development of centrally-acting agents potentiating cholinergic neurotransmission; these drugs, however, only slowed down the cognitive decline and could not prevent it. Consequently, the perturbation of the central cholinergic signalling has been accepted as a part of the Alzheimer's aetiology but not necessarily the primary cause of the disease. In the present study we have focused on the rs3810950 polymorphism of ChAT (choline acetyltransferase) gene that has not been studied in Czech population before. METHODS: We carried out an association study to test for a relationship between the rs3810950 polymorphism and Alzheimer's disease in a group of 1186 persons; 759 patients with Alzheimer's disease and 427 control subjects. Furthermore, we performed molecular modelling of the terminal domain (1st-126th amino acid residue) of one of the ChAT isoforms (M) to visualise in silico whether the rs3810950 polymorphism (A120T) can change any features of the tertiary structure of the protein which would have a potential to alter its function. RESULTS: The AA genotype of CHAT was associated with a 1.25 times higher risk of AD (p <  0.002) thus demonstrating that the rs3810950 polymorphism can have a modest but statistically significant effect on the risk of AD in the Czech population. Furthermore, the molecular modelling indicated that the polymorphism is likely to be associated with significant variations in the tertiary structure of the protein molecule which may impact its enzyme activity. CONCLUSIONS: Our findings are consistent with the results of the meta-analytical studies of the relationship between rs3810950 polymorphism and AD and provide further material evidence for a direct (primary) involvement of cholinergic mechanisms in the etiopathogenesis of AD, particularly as a factor in cognitive decline and perturbed conscious awareness commonly observed in patients with AD.


Assuntos
Colina O-Acetiltransferase/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Colina O-Acetiltransferase/metabolismo , República Tcheca , Feminino , Genótipo , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA