Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400258, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887142

RESUMO

S-adenosyl-l-methionine-dependent methyltransferases (MTs) are involved in the C-methylation of a variety of natural products. The MTs SgvM from Streptomyces griseoviridis and MrsA from Pseudomonas syringae pv. syringae catalyze the methylation of the ß-carbon atom of α-keto acids in the biosynthesis of the antibiotic natural products viridogrisein and 3-methylarginine, respectively. MrsA shows high substrate selectivity for 5-guanidino-2-oxovalerate, while other α-keto acids, such as the SgvM substrates 4-methyl-2-oxovalerate, 2-oxovalerate, and phenylpyruvate, are not accepted. Here we report the crystal structures of SgvM and MrsA in the apo form and bound with substrate or S-adenosyl-l-methionine. By investigating key residues for substrate recognition in the active sites of both enzymes and engineering MrsA by site-directed mutagenesis, the substrate range of MrsA was extended to accept α-keto acid substrates of SgvM with uncharged and lipophilic ß-residues. Our results showcase the transfer of the substrate scope of α-keto acid MTs from different biosynthetic pathways by rational design.

2.
Commun Biol ; 7(1): 48, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184752

RESUMO

The septins of the yeast Saccharomyces cerevisiae assemble into hetero-octameric rods by alternating interactions between neighboring G-domains or N- and C-termini, respectively. These rods polymerize end to end into apolar filaments, forming a ring beneath the prospective new bud that expands during the cell cycle into an hourglass structure. The hourglass finally splits during cytokinesis into a double ring. Understanding these transitions as well as the plasticity of the higher order assemblies requires a detailed knowledge of the underlying structures. Here we present the first X-ray crystal structure of a tetrameric Shs1-Cdc12-Cdc3-Cdc10 complex at a resolution of 3.2 Å. Close inspection of the NC-interfaces of this and other septin structures reveals a conserved contact motif that is essential for NC-interface integrity of yeast and human septins in vivo and in vitro. Using the tetrameric structure in combination with AlphaFold-Multimer allowed us to propose a model of the octameric septin rod.


Assuntos
Saccharomyces cerevisiae , Septinas , Humanos , Divisão Celular , Ciclo Celular , Citocinese
3.
Angew Chem Int Ed Engl ; 60(52): 27277-27281, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612584

RESUMO

NADH:ubiquinone oxidoreductase, respiratory complex I, plays a central role in cellular energy metabolism. As a major source of reactive oxygen species (ROS) it affects ageing and mitochondrial dysfunction. The novel inhibitor NADH-OH specifically blocks NADH oxidation and ROS production by complex I in nanomolar concentrations. Attempts to elucidate its structure by NMR spectroscopy have failed. Here, by using X-ray crystallographic analysis, we report the structure of NADH-OH bound in the active site of a soluble fragment of complex I at 2.0 Šresolution. We have identified key amino acid residues that are specific and essential for binding NADH-OH. Furthermore, the structure sheds light on the specificity of NADH-OH towards the unique Rossmann-fold of complex I and indicates a regulatory role in mitochondrial ROS generation. In addition, NADH-OH acts as a lead-structure for the synthesis of a novel class of ROS suppressors.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , NAD/análogos & derivados , Aquifex/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , NAD/química , NAD/metabolismo , NAD/farmacologia , Ligação Proteica
4.
J Struct Biol ; 213(4): 107794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506908

RESUMO

The S-adenosyl-L-methionine-dependent methyltransferase Rv0560c of Mycobacterium tuberculosis belongs to an orthologous group of heterocyclic toxin methyltransferases (Htm) which likely contribute to resistance of mycobacteria towards antimicrobial natural compounds as well as drugs. HtmM.t. catalyzes the methylation of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (also known as 2-heptyl-4-hydroxyquinoline N-oxide), a potent inhibitor of respiratory electron transfer, its 1-hydroxyquinolin-4(1H)-one core (QNO), structurally related (iso)quinolones, and some mycobactericidal compounds. In this study, crystal structures of HtmM.t. in complex with S-adenosyl-L-homocysteine (SAH) and the methyl-accepting substrates QNO or 4-hydroxyisoquinoline-1(2H)-one, or the methylated product 1-methoxyquinolin-4(1H)-one, were determined at < 1.9 Å resolution. The monomeric protein exhibits the typical Rossmann fold topology and conserved residues of class I methyltransferases. Its SAH binding pocket is connected via a short tunnel to a large solvent-accessible cavity, which accommodates the methyl-accepting substrate. Residues W44, F168, and F208 in connection with F212 form a hydrophobic clamp around the heteroaromatic ring of the methyl-accepting substrate and likely play a major role in substrate positioning. Structural and biochemical data suggest that H139 and T136 are key active site residues, with H139 acting as general base that activates the methyl-accepting hydroxy group. Our structural data may contribute to the design of Htm inhibitors or of antimycobacterial drugs unamenable for methylation.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroxiquinolinas/metabolismo , Metiltransferases/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Hidroxiquinolinas/química , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Conformação Proteica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Nat Commun ; 10(1): 2551, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186428

RESUMO

Respiratory complex I plays a central role in cellular energy metabolism coupling NADH oxidation to proton translocation. In humans its dysfunction is associated with degenerative diseases. Here we report the structure of the electron input part of Aquifex aeolicus complex I at up to 1.8 Å resolution with bound substrates in the reduced and oxidized states. The redox states differ by the flip of a peptide bond close to the NADH binding site. The orientation of this peptide bond is determined by the reduction state of the nearby [Fe-S] cluster N1a. Fixation of the peptide bond by site-directed mutagenesis led to an inactivation of electron transfer and a decreased reactive oxygen species (ROS) production. We suggest the redox-gated peptide flip to represent a previously unrecognized molecular switch synchronizing NADH oxidation in response to the redox state of the complex as part of an intramolecular feed-back mechanism to prevent ROS production.


Assuntos
Complexo I de Transporte de Elétrons/química , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bactérias/química , Bactérias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Mutagênese Sítio-Dirigida , NAD/química , Oxirredução
6.
J Biol Inorg Chem ; 23(7): 1049-1056, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141094

RESUMO

Nitrogenases catalyze the biological fixation of inert N2 into bioavailable ammonium. They are bipartite systems consisting of the catalytic dinitrogenase and a complementary reductase, the Fe protein that is also the site where ATP is hydrolyzed to drive the reaction forward. Three different subclasses of dinitrogenases are known, employing either molybdenum, vanadium or only iron at their active site cofactor. Although in all these classes the mode and mechanism of interaction with Fe protein is conserved, each one encodes its own orthologue of the reductase in the corresponding gene cluster. Here we present the 2.2 Å resolution structure of VnfH from Azotobacter vinelandii, the Fe protein of the alternative, vanadium-dependent nitrogenase system, in its ADP-bound state. VnfH adopts the same conformation that was observed for NifH, the Fe protein of molybdenum nitrogenase, in complex with ADP, representing a state of the functional cycle that is ready for reduction and subsequent nucleotide exchange. The overall similarity of NifH and VnfH confirms the experimentally determined cross-reactivity of both ATP-hydrolyzing reductases.


Assuntos
Azotobacter vinelandii/enzimologia , Nitrogenase/química , Cristalografia por Raios X , Modelos Moleculares , Nitrogenase/isolamento & purificação , Nitrogenase/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(13): 3350-3355, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531036

RESUMO

Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.


Assuntos
Deinococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Cristalografia por Raios X , Cinética , Ligantes , Fosforilação , Conformação Proteica , Especificidade por Substrato
8.
Optica ; 4(7): 802-808, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28894770

RESUMO

Deterministic techniques enabling the implementation and engineering of bright and coherent solid-state quantum light sources are key for the reliable realization of a next generation of quantum devices. Such a technology, at best, should allow one to significantly scale up the number of implemented devices within a given processing time. In this work, we discuss a possible technology platform for such a scaling procedure, relying on the application of nanoscale quantum dot imaging to the pillar microcavity architecture, which promises to combine very high photon extraction efficiency and indistinguishability. We discuss the alignment technology in detail, and present the optical characterization of a selected device which features a strongly Purcell-enhanced emission output. This device, which yields an extraction efficiency of η = (49 ± 4) %, facilitates the emission of photons with (94 ± 2.7) % indistinguishability.

9.
Angew Chem Int Ed Engl ; 56(41): 12476-12480, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28766825

RESUMO

Bromodomain and extra-terminal domain (BET) inhibitors are widely used both as chemical tools to study the biological role of their targets in living organisms and as candidates for drug development against several cancer variants and human disorders. However, non-BET bromodomains such as those in p300 and CBP are less studied. XDM-CBP is a highly potent and selective inhibitor for the bromodomains of CBP and p300 derived from a pan-selective BET BRD-binding fragment. Along with X-ray crystal-structure analysis and thermodynamic profiling, XDM-CBP was used in screenings of several cancer cell lines in vitro to study its inhibitory potential on cancer cell proliferation. XDM-CBP is demonstrated to be a potent and selective CBP/p300 inhibitor that acts on specific cancer cell lines, in particular malignant melanoma, breast cancer, and leukemia.

10.
FEBS Lett ; 591(2): 312-321, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27990630

RESUMO

Mg2+ -dependent catechol-O-methyltransferases occur in animals as well as in bacteria, fungi and plants, often with a pronounced selectivity towards one of the substrate's hydroxyl groups. Here, we show that the bacterial MxSafC exhibits excellent regioselectivity for para as well as for meta methylation, depending on the substrate's characteristics. The crystal structure of MxSafC was solved in apo and in holo form. The structure complexed with a full set of substrates clearly illustrates the plasticity of the active site region. The awareness that a wide range of factors influences the regioselectivity will aid the further development of catechol-O-methyltransferases as well as other methyltransferases as selective and efficient biocatalysts for chemical synthesis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/metabolismo , Myxococcus/enzimologia , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Modelos Moleculares , Estereoisomerismo , Especificidade por Substrato
11.
Angew Chem Int Ed Engl ; 55(50): 15531-15534, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27874239

RESUMO

Phloroglucinol reductases (PGRs) are involved in anaerobic degradation in bacteria, in which they catalyze the dearomatization of phloroglucinol into dihydrophloroglucinol. We identified three PGRs, from different bacterial species, that are members of the family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs). In addition to catalyzing the reduction of the physiological substrate, the three enzymes exhibit activity towards 2,4,6-trihydroxybenzaldehyde, 2,4,6-trihydroxyacetophenone, and methyl 2,4,6-trihydroxybenzoate. Structural elucidation of PGRcl and comparison to known SDRs revealed a high degree of conservation. Several amino acid positions were identified as being conserved within the PGR subfamily and might be involved in substrate differentiation. The results enable the enzymatic dearomatization of monoaromatic phenol derivatives and provide insight into the functional diversity that may be found in families of enzymes displaying a high degree of structural homology.


Assuntos
Bactérias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Acetofenonas/metabolismo , Bactérias/química , Bactérias/metabolismo , Benzaldeídos/metabolismo , Biocatálise , Ácido Gálico/análogos & derivados , Ácido Gálico/metabolismo , Conformação Proteica , Especificidade por Substrato
12.
Data Brief ; 7: 1370-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27158652

RESUMO

This article presents detailed purification procedures for the bromodomains BRD3(1), BRD3(2), BRD4(1), and BRPF1B. In addition we provide crystallization protocols for apo BRD4(1) and BRD4(1) in complex with numerous inhibitors. The protocols described here were successfully applied to obtain affinity data by isothermal titration calorimetry (ITC) and by differential scanning fluorimetry (DSF) as well as structural characterizations of BRD4(1) inhibitor complexes (PDB codes: PDB: 4LYI, PDB: 4LZS, PDB: 4LYW, PDB: 4LZR, PDB: 4LYS, PDB: 5D24, PDB: 5D25, PDB: 5D26, PDB: 5D3H, PDB: 5D3J, PDB: 5D3L, PDB: 5D3N, PDB: 5D3P, PDB: 5D3R, PDB: 5D3S, PDB: 5D3T). These data have been reported previously and are discussed in more detail elsewhere [1], [2].

13.
Opt Express ; 24(8): 8539-46, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137291

RESUMO

The implementation and engineering of bright and coherent solid state quantum light sources is key for the realization of both on chip and remote quantum networks. Despite tremendous efforts for more than 15 years, the combination of these two key prerequisites in a single, potentially scalable device is a major challenge. Here, we report on the observation of bright single photon emission generated via pulsed, resonance fluorescence conditions from a single quantum dot (QD) deterministically centered in a micropillar cavity device via cryogenic optical lithography. The brightness of the QD fluorescence is greatly enhanced on resonance with the fundamental mode of the pillar, leading to an overall device efficiency of η = (74 ± 4) % for a single photon emission as pure as g(2)(0) = 0.0092 ± 0.0004. The combination of large Purcell enhancement and resonant pumping conditions allows us to observe a two-photon wave packet overlap up to ν = (88 ± 3) %.

14.
J Struct Biol ; 193(3): 157-161, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780475

RESUMO

Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto/química , Proteínas de Ligação ao GTP/química , Proteínas de Saccharomyces cerevisiae/química , Septinas/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Trifosfato/química , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Septinas/metabolismo
15.
Nat Struct Mol Biol ; 23(2): 132-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26751641

RESUMO

Prostate cancer evolution is driven by a combination of epigenetic and genetic alterations such as coordinated chromosomal rearrangements, termed chromoplexy. TMPRSS2-ERG gene fusions found in human prostate tumors are a hallmark of chromoplexy. TMPRSS2-ERG fusions have been linked to androgen signaling and depend on androgen receptor (AR)-coupled gene transcription. Here, we show that dimethylation of KDM1A at K114 (to form K114me2) by the histone methyltransferase EHMT2 is a key event controlling androgen-dependent gene transcription and TMPRSS2-ERG fusion. We identified CHD1 as a KDM1A K114me2 reader and characterized the KDM1A K114me2-CHD1 recognition mode by solving the cocrystal structure. Genome-wide analyses revealed chromatin colocalization of KDM1A K114me2, CHD1 and AR in prostate tumor cells. Together, our data link the assembly of methylated KDM1A and CHD1 with AR-dependent transcription and genomic translocations, thereby providing mechanistic insight into the formation of TMPRSS2-ERG gene fusions during prostate-tumor evolution.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Translocação Genética , Linhagem Celular , Cristalografia por Raios X , DNA Helicases/análise , Proteínas de Ligação a DNA/análise , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona Desmetilases/análise , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Metilação , Modelos Moleculares , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/análise , Transcrição Gênica
16.
J Med Chem ; 59(4): 1518-30, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26731611

RESUMO

Several human diseases, including cancer, show altered signaling pathways resulting from changes in the activity levels of epigenetic modulators. In the past few years, small-molecule inhibitors against specific modulators, including the bromodomain and extra-terminal (BET) bromodomain family of acetylation readers, have shown early promise in the treatment of the genetically defined midline carcinoma and hematopoietic malignancies. We have recently developed a novel potent inhibitor of BET proteins, 1 (XD14[ Angew. Chem., Int. Ed. 2013, 52, 14055]), which exerts a strong inhibitory potential on the proliferation of specific leukemia cell lines. In the study presented here, we designed analogues of 1 to study the potential of substitutions on the 4-acyl pyrrole backbone to occupy additional sites within the substrate recognition site of BRD4(1). The compounds were profiled using ITC, DSF, and X-ray crystallography. We could introduce several substitutions that address previously untargeted areas of the substrate recognition site. This work may substantially contribute to the development of therapeutics with increased target specificity against BRD4-related malignancies.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Pirróis/química , Pirróis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Acilação , Sítios de Ligação , Proteínas de Ciclo Celular , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Fatores de Transcrição/química
17.
Angew Chem Int Ed Engl ; 55(6): 2252-6, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26748890

RESUMO

Sirtuins are NAD(+)-dependent protein deacylases that cleave off acetyl groups, as well as other acyl groups, from the ɛ-amino group of lysines in histones and other substrate proteins. Dysregulation of human Sirt2 activity has been associated with the pathogenesis of cancer, inflammation, and neurodegeneration, thus making Sirt2 a promising target for pharmaceutical intervention. Here, based on a crystal structure of Sirt2 in complex with an optimized sirtuin rearranging ligand (SirReal) that shows improved potency, water solubility, and cellular efficacy, we present the development of the first Sirt2-selective affinity probe. A slow dissociation of the probe/enzyme complex offers new applications for SirReals, such as biophysical characterization, fragment-based screening, and affinity pull-down assays. This possibility makes the SirReal probe an important tool for studying sirtuin biology.


Assuntos
Sondas Moleculares/análise , Sondas Moleculares/química , Sirtuína 2/análise , Sirtuína 2/química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Sondas Moleculares/síntese química , Estrutura Molecular , Sirtuína 2/metabolismo , Solubilidade , Relação Estrutura-Atividade
18.
J Am Chem Soc ; 138(1): 239-47, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26654855

RESUMO

The two-component metalloprotein nitrogenase catalyzes the reductive fixation of atmospheric dinitrogen into bioavailable ammonium in diazotrophic prokaryotes. The process requires an efficient energy metabolism, so that although the metal clusters of nitrogenase rapidly decompose in the presence of dioxygen, many free-living diazotrophs are obligate aerobes. In order to retain the functionality of the nitrogen-fixing enzyme, some of these are able to rapidly "switch-off" nitrogenase, by shifting the enzyme into an inactive but oxygen-tolerant state. Under these conditions the two components of nitrogenase form a stable, ternary complex with a small [2Fe:2S] ferredoxin termed FeSII or the "Shethna protein II". Here we have produced and isolated Azotobacter vinelandii FeS II and have determined its three-dimensional structure to 2.1 Å resolution by X-ray diffraction. In the crystals, the dimeric protein was present in two distinct states that differ in the conformation of an extended loop in close proximity to the iron-sulfur cluster. We show that this rearrangement is redox-dependent and forms the molecular basis for oxygen-dependent conformational protection of nitrogenase. Protection assays highlight that FeSII binds to a preformed complex of MoFe and Fe protein upon activation, primarily through electrostatic interactions. The surface properties and known complexes of nitrogenase component proteins allow us to propose a model of the conformationally protected ternary complex of nitrogenase.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Oxigênio/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Difração de Raios X
19.
J Med Chem ; 59(4): 1599-612, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26696402

RESUMO

Sirtuins are NAD(+)-dependent protein deacylases that cleave off acetyl but also other acyl groups from the ε-amino group of lysines in histones and other substrate proteins. Dysregulation of human Sirt2 (hSirt2) activity has been associated with the pathogenesis of cancer, inflammation, and neurodegeneration, which makes the modulation of hSirt2 activity a promising strategy for pharmaceutical intervention. The sirtuin rearranging ligands (SirReals) have recently been discovered by us as highly potent and isotype-selective hSirt2 inhibitors. Here, we present a well-defined structure-activity relationship study, which rationalizes the unique features of the SirReals and probes the limits of modifications on this scaffold regarding inhibitor potency. Moreover, we present a crystal structure of hSirt2 in complex with an optimized SirReal derivative that exhibits an improved in vitro activity. Lastly, we show cellular hyperacetylation of the hSirt2 targeted tubulin caused by our improved lead structure.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sirtuína 2/antagonistas & inibidores , Tiazóis/química , Tiazóis/farmacologia , Aminação , Cristalografia por Raios X , Células HeLa , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Sirtuína 2/química , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
20.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 12): 1498-510, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625292

RESUMO

Sirtuins constitute a family of NAD(+)-dependent enzymes that catalyse the cleavage of various acyl groups from the ℇ-amino group of lysines. They regulate a series of cellular processes and their misregulation has been implicated in various diseases, making sirtuins attractive drug targets. To date, only a few sirtuin modulators have been reported that are suitable for cellular research and their development has been hampered by a lack of structural information. In this work, microseed matrix seeding (MMS) was used to obtain crystals of human Sirt3 in its apo form and of human Sirt2 in complex with ADP ribose (ADPR). Crystal formation using MMS was predictable, less error-prone and yielded a higher number of crystals per drop than using conventional crystallization screening methods. The crystals were used to solve the crystal structures of apo Sirt3 and of Sirt2 in complex with ADPR at an improved resolution, as well as the crystal structures of Sirt2 in complex with ADPR and the indoles EX527 and CHIC35. These Sirt2-ADPR-indole complexes unexpectedly contain two indole molecules and provide novel insights into selective Sirt2 inhibition. The MMS approach for Sirt2 and Sirt3 may be used as the basis for structure-based optimization of Sirt2/3 inhibitors in the future.


Assuntos
Cristalografia por Raios X , Sirtuína 2/química , Sirtuína 3/química , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA