Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34683371

RESUMO

Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.

2.
Microorganisms ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809790

RESUMO

Polychlorinated biphenyls (PCBs) are organic pollutants that are harmful to environment and toxic to humans. Numerous studies, based on basidiomycete strains, have reported unsatisfactory results in the mycoremediation of PCB-contaminated soils mainly due to the non-telluric origin of these strains. The abilities of a five-Ascomycete-strain consortium in the mycoremediation of PCB-polluted soils and its performance to restore their sound functioning were investigated using mesocosm experiments associated with chromatography gas analysis and enzymatic activity assays. With the soil H containing 850 ppm PCB from which the strains had been isolated, a significant PCB depletion of 29% after three months of treatment was obtained. This led to an important decrease of PCBs from 850 to 604 ppm. With the soil L containing 36 ppm PCB, biodegradation did not occur. In both soils, the fungal biomass quantified by the ergosterol assay, did not increase at the end of the treatment. Biodegradation evidenced in the soil H resulted in a significantly improved stoichiometry of N and P acquiring enzymatic activities. This unprecedented study demonstrates that the native Ascomycetes display remarkable properties for remediation and restoration of functioning of the soil they originated from paving the way for greater consideration of these strains in mycoremediation.

3.
Environ Sci Pollut Res Int ; 26(15): 14943-14950, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919176

RESUMO

Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants. Up to now, many studies have focused on bioremediation of PCBs by fungal strains; however, the mechanisms of adaptation of these strains towards PCBs remain unknown despite their importance in developing effective bioremediation processes. We studied five species, each consisting of two strains isolated either from PCB-polluted or PCB-unpolluted substrates (control strains). We investigated their responses to PCB contamination by studying their tolerance to PCBs, their ability to reduce these pollutants, and their expression level of Laccase genes. In Thermothelomyces thermophila, Thermothelomyces heterothallica, Thermoascus crustaceus, and Fusarium solani, all the studied strains showed a similar tolerance and PCB degradation regardless of their origin. In Schizophyllum commune, while both strains showed similar resistance to PCBs, i.e., PCBs and their degradation products presented no toxicity for these strains, the rate of PCB degradation of the strain from a PCB-polluted environment was significantly slightly higher. The PCB degradation did not correlate with the expression level of genes encoding Laccases. These results demonstrate that the tolerance and PCB degradation by the fungal strains, which did not involve Laccase genes, required different adaptation systems which seem to be constitutive or rapidly inducible by PCB according to the fungal species.


Assuntos
Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Lacase/genética , Bifenilos Policlorados/toxicidade , Adaptação Biológica , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Regulação Fúngica da Expressão Gênica , Lacase/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA