Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biomedicines ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893054

RESUMO

Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.

2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175987

RESUMO

Neuropathic pain is a frequent feature of diabetic peripheral neuropathy (DPN) and small fiber neuropathy (SFN). Resolving the genetic architecture of these painful neuropathies will lead to better disease management strategies, counselling and intervention. Our aims were to profile ten sodium channel genes (SCG) expressed in a nociceptive pathway in painful and painless DPN and painful and painless SFN patients, and to provide a perspective for clinicians who assess patients with painful peripheral neuropathy. Between June 2014 and September 2016, 1125 patients with painful-DPN (n = 237), painless-DPN (n = 309), painful-SFN (n = 547) and painless-SFN (n = 32), recruited in four different centers, were analyzed for SCN3A, SCN7A-SCN11A and SCN1B-SCN4B variants by single molecule Molecular inversion probes-Next Generation Sequence. Patients were grouped based on phenotype and the presence of SCG variants. Screening of SCN3A, SCN7A-SCN11A, and SCN1B-SCN4B revealed 125 different (potential) pathogenic variants in 194 patients (17.2%, n = 194/1125). A potential pathogenic variant was present in 18.1% (n = 142/784) of painful neuropathy patients vs. 15.2% (n = 52/341) of painless neuropathy patients (17.3% (n = 41/237) for painful-DPN patients, 14.9% (n = 46/309) for painless-DPN patients, 18.5% (n = 101/547) for painful-SFN patients, and 18.8% (n = 6/32) for painless-SFN patients). Of the variants detected, 70% were in SCN7A, SCN9A, SCN10A and SCN11A. The frequency of SCN9A and SCN11A variants was the highest in painful-SFN patients, SCN7A variants in painful-DPN patients, and SCN10A variants in painless-DPN patients. Our findings suggest that rare SCG genetic variants may contribute to the development of painful neuropathy. Genetic profiling and SCG variant identification should aid in a better understanding of the genetic variability in patients with painful and painless neuropathy, and may lead to better risk stratification and the development of more targeted and personalized pain treatments.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuralgia/patologia , Neuropatias Diabéticas/patologia , Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.7/genética
4.
Eur J Hum Genet ; 31(6): 654-662, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781956

RESUMO

Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.


Assuntos
Transtornos dos Movimentos , Distrofia Muscular de Duchenne , Humanos , Exoma , Variações do Número de Cópias de DNA , Éxons , Distrofia Muscular de Duchenne/genética , Transtornos dos Movimentos/genética
5.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430572

RESUMO

Neuropathic pain is a characteristic feature of small fiber neuropathy (SFN), which in 18% of the cases is caused by genetic variants in voltage-gated sodium ion channels. In this study, we assessed the role of fifteen other ion channels in neuropathic pain. Patients with SFN (n = 414) were analyzed for ANO1, ANO3, HCN1, KCNA2, KCNA4, KCNK18, KCNN1, KCNQ3, KCNQ5, KCNS1, TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 variants by single-molecule molecular inversion probes-next-generation sequencing. These patients did not have genetic variants in SCN3A, SCN7A-SCN11A and SCN1B-SCN4B. In twenty patients (20/414, 4.8%), a potentially pathogenic heterozygous variant was identified in an ion-channel gene (ICG). Variants were present in seven genes, for two patients (0.5%) in ANO3, one (0.2%) in KCNK18, two (0.5%) in KCNQ3, seven (1.7%) in TRPA1, three (0.7%) in TRPM8, three (0.7%) in TRPV1 and two (0.5%) in TRPV3. Variants in the TRP genes were the most frequent (n = 15, 3.6%), partly in patients with high mean maximal pain scores VAS = 9.65 ± 0.7 (n = 4). Patients with ICG variants reported more severe pain compared to patients without such variants (VAS = 9.36 ± 0.72 vs. VAS = 7.47 ± 2.37). This cohort study identified ICG variants in neuropathic pain in SFN, complementing previous findings of ICG variants in diabetic neuropathy. These data show that ICG variants are central in neuropathic pain of different etiologies and provides promising gene candidates for future research.


Assuntos
Canais Iônicos , Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Anoctaminas , Estudos de Coortes , Neuropatias Diabéticas/genética , Neuralgia/genética , Canais de Potássio/genética , Neuropatia de Pequenas Fibras/genética , Canais Iônicos/genética
6.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806193

RESUMO

Neuropathic pain is common in diabetic peripheral neuropathy (DN), probably caused by pathogenic ion channel gene variants. Therefore, we performed molecular inversion probes-next generation sequencing of 5 transient receptor potential cation channels, 8 potassium channels and 2 calcium-activated chloride channel genes in 222 painful- and 304 painless-DN patients. Twelve painful-DN (5.4%) patients showed potentially pathogenic variants (five nonsense/frameshift, seven missense, one out-of-frame deletion) in ANO3 (n = 3), HCN1 (n = 1), KCNK18 (n = 2), TRPA1 (n = 3), TRPM8 (n = 3) and TRPV4 (n = 1) and fourteen painless-DN patients (4.6%-three nonsense/frameshift, nine missense, one out-of-frame deletion) in ANO1 (n = 1), KCNK18 (n = 3), KCNQ3 (n = 1), TRPA1 (n = 2), TRPM8 (n = 1), TRPV1 (n = 3) and TRPV4 (n = 3). Missense variants were present in both conditions, presumably with loss- or gain-of-functions. KCNK18 nonsense/frameshift variants were found in painless/painful-DN, making a causal role in pain less likely. Surprisingly, premature stop-codons with likely nonsense-mediated RNA-decay were more frequent in painful-DN. Although limited in number, painful-DN patients with ion channel gene variants reported higher maximal pain during the night and day. Moreover, painful-DN patients with TRP variants had abnormal thermal thresholds and more severe pain during the night and day. Our results suggest a role of ion channel gene variants in neuropathic pain, but functional validation is required.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Canais de Potencial de Receptor Transitório , Anoctaminas , Humanos , Canais de Potássio , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/fisiologia
7.
J Neurophysiol ; 126(3): 827-839, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320850

RESUMO

Small fiber neuropathy (SFN) is a common condition affecting thinly myelinated Aδ and unmyelinated C fibers, often resulting in excruciating pain and dysautonomia. SFN has been associated with several conditions, but a significant number of cases have no discernible cause. Recent genetic studies have identified potentially pathogenic gain-of-function mutations in several pore-forming voltage-gated sodium channel α subunits (NaV) in a subset of patients with SFN, but the auxiliary sodium channel ß subunits have been less implicated in the development of the disease. ß subunits modulate NaV trafficking and gating, and several mutations have been linked to epilepsy and cardiac dysfunction. Recently, we provided the first evidence for the contribution of a mutation in the ß2 subunit to pain in human painful diabetic neuropathy. Here, we provide the first evidence for the involvement of a sodium channel ß subunit mutation in the pathogenesis of SFN with no other known causes. We show, through current-clamp analysis, that the newly identified Y69H variant of the ß2 subunit induces neuronal hyperexcitability in dorsal root ganglion neurons, lowering the threshold for action potential firing and allowing for increased repetitive action potential spiking. Underlying the hyperexcitability induced by the ß2-Y69H variant, we demonstrate an upregulation in tetrodotoxin-sensitive, but not tetrodotoxin-resistant sodium currents. This provides the first evidence for the involvement of ß2 subunits in SFN and strengthens the link between sodium channel ß subunits and the development of neuropathic pain in humans.NEW & NOTEWORTHY Small fiber neuropathy (SFN) often has no discernible cause, although mutations in the voltage-gated sodium channel α subunits have been implicated in some cases. We identify a patient suffering from SFN with a mutation in the auxiliary ß2 subunit and no other discernible causes for SFN. Functional assessment confirms this mutation renders dorsal root ganglion neurons hyperexcitable and upregulates tetrodotoxin-sensitive sodium currents. This study strengthens a newly emerging link between sodium channel ß2 subunit mutations and human pain disorders.


Assuntos
Mutação com Ganho de Função , Neuropatia de Pequenas Fibras/genética , Subunidade beta-2 do Canal de Sódio Disparado por Voltagem/genética , Potenciais de Ação , Animais , Células Cultivadas , Gânglios Espinais/citologia , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Neuropatia de Pequenas Fibras/metabolismo , Subunidade beta-2 do Canal de Sódio Disparado por Voltagem/metabolismo
8.
BMC Bioinformatics ; 22(1): 212, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892629

RESUMO

BACKGROUND: Mutation-induced variations in the functional architecture of the NaV1.7 channel protein are causally related to a broad spectrum of human pain disorders. Predicting in silico the phenotype of NaV1.7 variant is of major clinical importance; it can aid in reducing costs of in vitro pathophysiological characterization of NaV1.7 variants, as well as, in the design of drug agents for counteracting pain-disease symptoms. RESULTS: In this work, we utilize spatial complexity of hydropathic effects toward predicting which NaV1.7 variants cause pain (and which are neutral) based on the location of corresponding mutation sites within the NaV1.7 structure. For that, we analyze topological and scaling hydropathic characteristics of the atomic environment around NaV1.7's pore and probe their spatial correlation with mutation sites. We show that pain-related mutation sites occupy structural locations in proximity to a hydrophobic patch lining the pore while clustering at a critical hydropathic-interactions distance from the selectivity filter (SF). Taken together, these observations can differentiate pain-related NaV1.7 variants from neutral ones, i.e., NaV1.7 variants not causing pain disease, with 80.5[Formula: see text] sensitivity and 93.7[Formula: see text] specificity [area under the receiver operating characteristics curve = 0.872]. CONCLUSIONS: Our findings suggest that maintaining hydrophobic NaV1.7 interior intact, as well as, a finely-tuned (dictated by hydropathic interactions) distance from the SF might be necessary molecular conditions for physiological NaV1.7 functioning. The main advantage for using the presented predictive scheme is its negligible computational cost, as well as, hydropathicity-based biophysical rationalization.


Assuntos
Dor , Humanos , Mutação , Fenótipo
10.
PLoS One ; 15(9): e0238467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877464

RESUMO

Resolving the genetic architecture of painful neuropathy will lead to better disease management strategies. We aimed to develop a reliable method to re-sequence multiple genes in a large cohort of painful neuropathy patients at low cost. In this study, we compared sensitivity, specificity, targeting efficiency, performance and cost effectiveness of Molecular Inversion Probes-Next generation sequencing (MIPs-NGS) and TruSeq® Custom Amplicon-Next generation sequencing (TSCA-NGS). Capture probes were designed to target nine sodium channel genes (SCN3A, SCN8A-SCN11A, and SCN1B-SCN4B). One hundred sixty-six patients with diabetic and idiopathic neuropathy were tested by both methods, 70 patients were validated by Sanger sequencing. Sensitivity, specificity and performance of both techniques were comparable, and in agreement with Sanger sequencing. The average targeted regions coverage for MIPs-NGS was 97.3% versus 93.9% for TSCA-NGS. MIPs-NGS has a more versatile assay design and is more flexible than TSCA-NGS. The cost of MIPs-NGS is >5 times cheaper than TSCA-NGS when 500 or more samples are tested. In conclusion, MIPs-NGS is a reliable, flexible, and relatively inexpensive method to detect genetic variations in a large cohort of patients. In our centers, MIPs-NGS is currently implemented as a routine diagnostic tool for screening of sodium channel genes in painful neuropathy patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sondas Moleculares/genética , Análise de Sequência de DNA/métodos , Inversão Cromossômica/genética , Sondas de DNA/genética , Testes Genéticos/métodos , Humanos , Mutação , Neuralgia/genética , Sensibilidade e Especificidade
11.
Eur J Hum Genet ; 28(7): 956-962, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203199

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.


Assuntos
Distrofia Miotônica/genética , Herança Paterna , Expansão das Repetições de Trinucleotídeos , Adulto , Criança , Cromossomos Humanos Par 19/genética , Feminino , Humanos , Masculino , Distrofia Miotônica/patologia
12.
Brain ; 143(3): 771-782, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011655

RESUMO

Small fibre neuropathy is a common pain disorder, which in many cases fails to respond to treatment with existing medications. Gain-of-function mutations of voltage-gated sodium channel Nav1.7 underlie dorsal root ganglion neuronal hyperexcitability and pain in a subset of patients with small fibre neuropathy. Recent clinical studies have demonstrated that lacosamide, which blocks sodium channels in a use-dependent manner, attenuates pain in some patients with Nav1.7 mutations; however, only a subgroup of these patients responded to the drug. Here, we used voltage-clamp recordings to evaluate the effects of lacosamide on five Nav1.7 variants from patients who were responsive or non-responsive to treatment. We show that, at the clinically achievable concentration of 30 µM, lacosamide acts as a potent sodium channel inhibitor of Nav1.7 variants carried by responsive patients, via a hyperpolarizing shift of voltage-dependence of both fast and slow inactivation and enhancement of use-dependent inhibition. By contrast, the effects of lacosamide on slow inactivation and use-dependence in Nav1.7 variants from non-responsive patients were less robust. Importantly, we found that lacosamide selectively enhances fast inactivation only in variants from responders. Taken together, these findings begin to unravel biophysical underpinnings that contribute to responsiveness to lacosamide in patients with small fibre neuropathy carrying select Nav1.7 variants.


Assuntos
Lacosamida/farmacologia , Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Neuropatia de Pequenas Fibras/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Humanos , Lacosamida/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/complicações , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Neuropatia de Pequenas Fibras/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Resultado do Tratamento , Adulto Jovem
13.
Mol Pain ; 15: 1744806919849802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041876

RESUMO

Diabetes mellitus is a global challenge with many diverse health sequelae, of which diabetic peripheral neuropathy is one of the most common. A substantial number of patients with diabetic peripheral neuropathy develop chronic pain, but the genetic and epigenetic factors that predispose diabetic peripheral neuropathy patients to develop neuropathic pain are poorly understood. Recent targeted genetic studies have identified mutations in α-subunits of voltage-gated sodium channels (Navs) in patients with painful diabetic peripheral neuropathy. Mutations in proteins that regulate trafficking or functional properties of Navs could expand the spectrum of patients with Nav-related peripheral neuropathies. The auxiliary sodium channel ß-subunits (ß1-4) have been reported to increase current density, alter inactivation kinetics, and modulate subcellular localization of Nav. Mutations in ß-subunits have been associated with several diseases, including epilepsy, cancer, and diseases of the cardiac conducting system. However, mutations in ß-subunits have never been shown previously to contribute to neuropathic pain. We report here a patient with painful diabetic peripheral neuropathy and negative genetic screening for mutations in SCN9A, SCN10A, and SCN11A-genes encoding sodium channel α-subunit that have been previously linked to the development of neuropathic pain. Genetic analysis revealed an aspartic acid to asparagine mutation, D109N, in the ß2-subunit. Functional analysis using current-clamp revealed that the ß2-D109N rendered dorsal root ganglion neurons hyperexcitable, especially in response to repetitive stimulation. Underlying the hyperexcitability induced by the ß2-subunit mutation, as evidenced by voltage-clamp analysis, we found a depolarizing shift in the voltage dependence of Nav1.7 fast inactivation and reduced use-dependent inhibition of the Nav1.7 channel.


Assuntos
Neuropatias Diabéticas/genética , Mutação com Ganho de Função/genética , Neuralgia/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Potenciais de Ação , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/fisiopatologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Neuralgia/complicações , Neuralgia/fisiopatologia , Fases de Leitura Aberta/genética , Domínios Proteicos , Tetrodotoxina/farmacologia , Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo
14.
Exp Neurol ; 311: 257-264, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316835

RESUMO

Small-fiber neuropathy (SFN) patients experience a spectrum of sensory abnormalities, including attenuated responses to non-noxious temperatures in combination with a decreased density of the small-nerve fibers. Gain-of-function mutations in the voltage-gated sodium channels SCN9A, SCN10A and SCN11A have been identified as an underlying genetic cause in a subpopulation of patients with SFN. Based on clinical-diagnostic tests for SFN, we have set up a panel of two read-outs reflecting SFN in zebrafish, being nerve density and behavioral responses. Nerve density was studied using a transgenic line in which the sensory neurons are GFP-labelled. For the behavioral experiments, a temperature-controlled water compartment was developed. This device allowed quantification of the behavioral response to temperature changes. By using these read-outs we demonstrated that zebrafish embryos transiently overexpressing the pathogenic human SCN9A p.(I228M) or p.(G856D) mutations both have a significantly decreased density of the small-nerve fibers. Additionally, larvae overexpressing the p.(I228M) mutation displayed a significant increase in activity induced by temperature change. As these features closely resemble the clinical hallmarks of SFN, our data suggest that transient overexpression of mutant human mRNA provides a model for SFN in zebrafish. This disease model may provide a basis for testing the pathogenicity of novel genetic variants identified in SFN patients. Furthermore, this model could be used for studying SFN pathophysiology in an in vivo model and for testing therapeutic interventions.


Assuntos
Modelos Animais de Doenças , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neuropatia de Pequenas Fibras/genética , Neuropatia de Pequenas Fibras/metabolismo , Animais , Feminino , Expressão Gênica , Humanos , Masculino , Neuropatia de Pequenas Fibras/patologia , Peixe-Zebra
15.
J Neurol Neurosurg Psychiatry ; 90(3): 342-352, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554136

RESUMO

BACKGROUND: Neuropathic pain is common in peripheral neuropathy. Recent genetic studies have linked pathogenic voltage-gated sodium channel (VGSC) variants to human pain disorders. Our aims are to determine the frequency of SCN9A, SCN10A and SCN11A variants in patients with pure small fibre neuropathy (SFN), analyse their clinical features and provide a rationale for genetic screening. METHODS: Between September 2009 and January 2017, 1139 patients diagnosed with pure SFN at our reference centre were screened for SCN9A, SCN10A and SCN11A variants. Pathogenicity of variants was classified according to established guidelines of the Association for Clinical Genetic Science and frequencies were determined. Patients with SFN were grouped according to the VGSC variants detected, and clinical features were compared. RESULTS: Among 1139 patients with SFN, 132 (11.6%) patients harboured 73 different (potentially) pathogenic VGSC variants, of which 50 were novel and 22 were found in ≥ 1 patient. The frequency of (potentially) pathogenic variants was 5.1% (n=58/1139) for SCN9A, 3.7% (n=42/1139) for SCN10A and 2.9% (n=33/1139) for SCN11A. Only erythromelalgia-like symptoms and warmth-induced pain were significantly more common in patients harbouring VGSC variants. CONCLUSION: (Potentially) pathogenic VGSC variants are present in 11.6% of patients with pure SFN. Therefore, genetic screening of SCN9A, SCN10A and SCN11A should be considered in patients with pure SFN, independently of clinical features or underlying conditions.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuropatia de Pequenas Fibras/genética , Idoso , Feminino , Testes Genéticos , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Valor Preditivo dos Testes , Estudos Retrospectivos , Neuropatia de Pequenas Fibras/complicações , Neuropatia de Pequenas Fibras/diagnóstico
16.
J Peripher Nerv Syst ; 23(3): 202-206, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29978519

RESUMO

Congenital insensitivity to pain (CIP) is a rare autosomal recessive disorder presenting with a spectrum of clinical features caused by mutations in different genes. A 10-year-old girl with CIP, hyposmia and hypogeusia, and her unaffected twin and parents underwent next generation sequencing of SCN9A exons and flanking splice sites. Transcript analysis from whole blood successfully assayed the effect of the mutation on the mRNA splicing by polymerase chain reaction amplification on cDNA and Sanger sequencing. We identified the novel splicing variant c.1108-2A>G compound with the p.Arg896Gln (c.2687G>A) missense mutation previously described in a homozygous patient. The new intronic variant was predicted to induce exon 10 skipping. Conversely, SCN9A mRNA assay demonstrated its partial deletion with a loss of 46 nucleotides causing a premature stop codon in position p.Gln369 (NP_002968). Genetic analysis showed that the two variants were biallelic, being the mother and brother heterozygous carriers of the missense mutation, and the father heterozygous for the splicing mutation. Skin biopsy showed lack of Meissner's corpuscles, loss of epidermal nociceptors and normal autonomic organ innervation. We report a novel splicing mutation and provide clues on its pathogenic effect, broadening the spectrum of genotypes and phenotypes associated to CIP.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/genética , Insensibilidade Congênita à Dor/genética , Criança , Feminino , Genótipo , Heterozigoto , Humanos , Mutação , Fenótipo
17.
BMC Syst Biol ; 11(1): 28, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28235406

RESUMO

BACKGROUND: Gain-of-function mutations in SCN9A gene that encodes the voltage-gated sodium channel NaV1.7 have been associated with a wide spectrum of painful syndromes in humans including inherited erythromelalgia, paroxysmal extreme pain disorder and small fibre neuropathy. These mutations change the biophysical properties of NaV1.7 channels leading to hyperexcitability of dorsal root ganglion nociceptors and pain symptoms. There is a need for better understanding of how gain-of-function mutations alter the atomic structure of Nav1.7. RESULTS: We used homology modeling to build an atomic model of NaV1.7 and a network-based theoretical approach, which can predict interatomic interactions and connectivity arrangements, to investigate how pain-related NaV1.7 mutations may alter specific interatomic bonds and cause connectivity rearrangement, compared to benign variants and polymorphisms. For each amino acid substitution, we calculated the topological parameters betweenness centrality (B ct ), degree (D), clustering coefficient (CC ct ), closeness (C ct ), and eccentricity (E ct ), and calculated their variation (Δ value = mutant value -WT value ). Pathogenic NaV1.7 mutations showed significantly higher variation of |ΔB ct | compared to benign variants and polymorphisms. Using the cut-off value ±0.26 calculated by receiver operating curve analysis, we found that ΔB ct correctly differentiated pathogenic NaV1.7 mutations from variants not causing biophysical abnormalities (nABN) and homologous SNPs (hSNPs) with 76% sensitivity and 83% specificity. CONCLUSIONS: Our in-silico analyses predict that pain-related pathogenic NaV1.7 mutations may affect the network topological properties of the protein and suggest |ΔB ct | value as a potential in-silico marker.


Assuntos
Biologia Computacional/métodos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Mapeamento de Interação de Proteínas , Humanos , Modelos Moleculares , Mutagênese , Canal de Sódio Disparado por Voltagem NAV1.7/química , Polimorfismo de Nucleotídeo Único , Conformação Proteica
18.
Brain ; 140(3): 555-567, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073787

RESUMO

Itch is thought to represent the peculiar response to stimuli conveyed by somatosensory pathways shared with pain through the activation of specific neurons and receptors. It can occur in association with dermatological, systemic and neurological diseases, or be the side effect of certain drugs. However, some patients suffer from chronic idiopathic itch that is frequently ascribed to psychological distress and for which no biomarker is available to date. We investigated three multigenerational families, one of which diagnosed with joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), characterized by idiopathic chronic itch with predominantly proximal distribution. Skin biopsy was performed in all eight affected members and revealed in six of them reduced intraepidermal nerve fibre density consistent with small fibre neuropathy. Whole exome sequencing identified two COL6A5 rare variants co-segregating with chronic itch in eight affected members and absent in non-affected members, and in one unrelated sporadic patient with type 1 painless diabetic neuropathy and chronic itch. Two families and the diabetic patient carried the nonsense c.6814G>T (p.Glu2272*) variant and another family carried the missense c.6486G>C (p.Arg2162Ser) variant. Both variants were predicted as likely pathogenic by in silico analyses. The two variants were rare (minor allele frequency < 0.1%) in 6271 healthy controls and absent in 77 small fibre neuropathy and 167 JHS/EDS-HT patients without itch. Null-allele test on cDNA from patients' fibroblasts of both families carrying the nonsense variant demonstrated functional haploinsufficiency due to activation of nonsense mediated RNA decay. Immunofluorescence microscopy and western blotting revealed marked disorganization and reduced COL6A5 synthesis, respectively. Indirect immunofluorescence showed reduced COL6A5 expression in the skin of patients carrying the nonsense variant. Treatment with gabapentinoids provided satisfactory itch relief in the patients carrying the mutations. Our findings first revealed an association between COL6A5 gene and familiar chronic itch, suggesting a new contributor to the pathogenesis of neuropathic itch and identifying a new candidate therapeutic target.


Assuntos
Colágeno Tipo VI/genética , Saúde da Família , Variação Genética/genética , Doenças do Sistema Nervoso Periférico/genética , Prurido/genética , Adulto , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/complicações , Prurido/complicações , Prurido/patologia , Pele/inervação , Pele/metabolismo , Pele/patologia
19.
PLoS One ; 11(2): e0148316, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26866599

RESUMO

OBJECTIVE: Screening for Fabry disease in patients with small fiber neuropathy has been suggested, especially since Fabry disease is potentially treatable. However, the diagnostic yield of testing for Fabry disease in isolated small fiber neuropathy patients has never been systematically investigated. Our aim is to determine the presence of Fabry disease in patients with small fiber neuropathy. METHODS: Patients referred to our institute, who met the criteria for isolated small fiber neuropathy were tested for Fabry disease by measurement of alpha-Galactosidase A activity in blood, lysosomal globotriaosylsphingosine in urine and analysis on possible GLA gene mutations. RESULTS: 725 patients diagnosed with small fiber neuropathy were screened for Fabry disease. No skin abnormalities were seen except for redness of the hands or feet in 30.9% of the patients. Alfa-Galactosidase A activity was tested in all 725 patients and showed diminished activity in eight patients. Lysosomal globotriaosylsphingosine was examined in 509 patients and was normal in all tested individuals. Screening of GLA for mutations was performed for 440 patients, including those with diminished α-Galactosidase A activity. Thirteen patients showed a GLA gene variant. One likely pathogenic variant was found in a female patient. The diagnosis Fabry disease could not be confirmed over time in this patient. Eventually none of the patients were diagnosed with Fabry disease. CONCLUSIONS: In patients with isolated small fiber neuropathy, and no other signs compatible with Fabry disease, the diagnostic yield of testing for Fabry disease is extremely low. Testing for Fabry disease should be considered only in cases with additional characteristics, such as childhood onset, cardiovascular disease, renal failure, or typical skin lesions.


Assuntos
Doença de Fabry/diagnóstico , Doença de Fabry/genética , Glicolipídeos/urina , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Amielínicas/patologia , Doenças do Sistema Nervoso/complicações , Esfingolipídeos/urina , alfa-Galactosidase/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doença de Fabry/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neuralgia/complicações , Prevalência , Estudos Retrospectivos , Transtornos de Sensação/complicações , Análise de Sequência de DNA , Adulto Jovem , alfa-Galactosidase/genética
20.
Neuromolecular Med ; 17(2): 158-69, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791876

RESUMO

Painful small fiber neuropathy is a challenging medical condition with no effective treatment. Non-genetic causes can be identified in one half of the subjects. Gain-of-function variants of sodium channels Nav1.7 and Nav1.8 have recently been associated with painful small fiber neuropathy. More recently, mutations of sodium channel Nav1.9 have been linked to human pain disorders, with two gain-of-function mutations found in patients with painful small fiber neuropathy. Here we report a novel Nav1.9 mutation, a glycine 699 substitution by arginine (G699R) in the domain II S4-S5 linker, identified in a patient with painful small fiber neuropathy. In this study, we assayed the mutant channels by voltage-clamp in superior cervical ganglion neurons, which do not produce endogenous Nav1.8 or Nav1.9 currents, and provide a novel platform where Nav1.9 is expressed at relatively high levels. Voltage-clamp analysis showed that the mutation hyperpolarizes (-10.1 mV) channel activation, depolarizes (+6.3 mV) steady-state fast inactivation, slows deactivation, and enhances ramp responses compared with wild-type Nav1.9 channels. Current-clamp analysis showed that the G699R mutant channels render dorsal root ganglion neurons hyperexcitable, via depolarized resting membrane potential, reduced current threshold and increased evoked firing. These observations show that the domain II S4-S5 linker plays an important role in the gating of Nav1.9 and demonstrates that a mutation in this linker is linked to a common pain disorder.


Assuntos
Substituição de Aminoácidos , Eritromelalgia/genética , Mutação de Sentido Incorreto , Mutação Puntual , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/fisiologia , Idoso , Sequência de Aminoácidos , Animais , Células Cultivadas , Gânglios Espinais/fisiopatologia , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.9/química , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Canal de Sódio Disparado por Voltagem NAV1.9/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Gânglio Cervical Superior/citologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA