Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 530(9): 1423-1437, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34919273

RESUMO

Microglia can interact with glutamatergic neurons and, through control of synaptic elements, regulate their physiological function. Much less is known about the partnership between microglia and GABAergic inhibitory interneurons. Here, we compared the interactions between microglia and parvalbumin (PV+) and somatostatin (SOM+) expressing interneurons in the CA1 hippocampal area of APP/PS1 transgenic mice that mimic certain aspects of the Alzheimer's disease (AD). We first uncovered a high level of interactions between microglia and two types of interneurons, with 98% of SOM+ and 90% of PV+ cells receiving different types of putative microglial contacts. The latter included the microglia soma to the interneuron soma (SomaMG -to-SomaIN ), the microglia process to the interneuron soma (ProcessMG -to-SomaIN ) and the microglia process to the interneuron dendrite (ProcessMG -to-DendIN ) interactions. Moreover, we found significantly larger areas of interaction for the SomaMG -to-SomaIN and the ProcessMG -to-DendIN type of contacts between microglia and SOM+ cells. In contrast, PV+ cells exhibited larger areas for the ProcessMG -to-SomaIN interactions. Second, in APP/PS1 mice, although the overall microglia interactions with interneurons remained preserved, the fraction of interneurons receiving putative microglia contacts on their dendrites was reduced, and larger areas of interactions were observed for somatic contacts, suggesting a stronger modulation of the interneuron output by microglia in AD. In summary, these results reveal microglia as important partners of hippocampal PV+ and SOM+ GABAergic cells, with interneuron type-specific pattern of interactions. Thus, microglia may play an essential role in the operation of interneurons under normal conditions and their dysfunction in disease.


Assuntos
Doença de Alzheimer , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Parvalbuminas/metabolismo
2.
Front Cell Neurosci ; 14: 558181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192308

RESUMO

Schizophrenia is a psychiatric disorder affecting ∼1% of humans worldwide. It is earlier and more frequently diagnosed in men than woman, and men display more pronounced negative symptoms together with greater gray matter reductions. Our previous findings utilizing a maternal immune activation (mIA) mouse model of schizophrenia revealed exacerbated anxiety-like behavior and sensorimotor gating deficits in adult male offspring that were associated with increased microglial reactivity and inflammation in the hippocampal dentate gyrus (DG). However, both male and female adult offspring displayed stereotypy and impairment of sociability. We hypothesized that mIA may lead to sex-specific alterations in microglial pruning activity, resulting in abnormal synaptic connectivity in the DG. Using the same mIA model, we show in the current study sex-specific differences in microglia and synapses within the DG of adult offspring. Specifically, microglial levels of cluster of differentiation (CD)68 and CD11b were increased in mIA-exposed females. Sex-specific differences in excitatory and inhibitory synapse densities were also observed following mIA. Additionally, inhibitory synaptic tone was increased in DG granule cells of both males and females, while changes in excitatory synaptic transmission occurred only in females with mIA. These findings suggest that phagocytic and complement pathways may together contribute to a sexual dimorphism in synaptic pruning and neuronal dysfunction in mIA, and may propose sex-specific therapeutic targets to prevent schizophrenia-like behaviors.

3.
J Neurosci ; 39(5): 788-801, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30523065

RESUMO

Hippocampus-dependent learning processes are coordinated via a large diversity of GABAergic inhibitory mechanisms. The α5 subunit-containing GABAA receptor (α5-GABAAR) is abundantly expressed in the hippocampus populating primarily the extrasynaptic domain of CA1 pyramidal cells, where it mediates tonic inhibitory conductance and may cause functional deficits in synaptic plasticity and hippocampus-dependent memory. However, little is known about synaptic expression of the α5-GABAAR and, accordingly, its location site-specific function. We examined the cell- and synapse-specific distribution of the α5-GABAAR in the CA1 stratum oriens/alveus (O/A) using a combination of immunohistochemistry, whole-cell patch-clamp recordings and optogenetic stimulation in hippocampal slices obtained from mice of either sex. In addition, the input-specific role of the α5-GABAAR in spatial learning and anxiety-related behavior was studied using behavioral testing and chemogenetic manipulations. We demonstrate that α5-GABAAR is preferentially targeted to the inhibitory synapses made by the vasoactive intestinal peptide (VIP)- and calretinin-positive terminals onto dendrites of somatostatin-expressing interneurons. In contrast, synapses made by the parvalbumin-positive inhibitory inputs to O/A interneurons showed no or little α5-GABAAR. Inhibiting the α5-GABAAR in control mice in vivo improved spatial learning but also induced anxiety-like behavior. Inhibiting the α5-GABAAR in mice with inactivated CA1 VIP input could still improve spatial learning and was not associated with anxiety. Together, these data indicate that the α5-GABAAR-mediated phasic inhibition via VIP input to interneurons plays a predominant role in the regulation of anxiety while the α5-GABAAR tonic inhibition via this subunit may control spatial learning.SIGNIFICANCE STATEMENT The α5-GABAAR subunit exhibits high expression in the hippocampus, and regulates the induction of synaptic plasticity and the hippocampus-dependent mnemonic processes. In CA1 principal cells, this subunit occupies mostly extrasynaptic sites and mediates tonic inhibition. Here, we provide evidence that, in CA1 somatostatin-expressing interneurons, the α5-GABAAR subunit is targeted to synapses formed by the VIP- and calretinin-expressing inputs, and plays a specific role in the regulation of anxiety-like behavior.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Calbindina 2/fisiologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Optogenética , Técnicas de Patch-Clamp , Somatostatina/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Peptídeo Intestinal Vasoativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA