Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thorac Oncol ; 11(7): 1051-63, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27006151

RESUMO

INTRODUCTION: Development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors is a clinical issue in patients with epidermal growth factor receptor gene (EGFR)-mutated non-small cell lung cancer (NSCLC). The aim of this study was to investigate the potential of combining gefitinib and pemetrexed in preventing the acquisition of resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines harboring EGFR exon 19 deletion. METHODS: The effect of different combinatorial schedules of gefitinib and pemetrexed on cell proliferation, cell cycle, apoptosis, and acquisition of gefitinib resistance in PC9 and HCC827 NSCLC cell lines and in PC9 xenograft models was investigated. RESULTS: Simultaneous treatment with gefitinib and pemetrexed enhanced cell growth inhibition and cell death and prevented the appearance of gefitinib resistance mediated by T790M mutation or epithelial-to-mesenchymal transition (EMT) in PC9 and HCC827 cells, respectively. In PC9 cells and in PC9 xenografts the combination of gefitinib and pemetrexed, with different schedules, prevented gefitinib resistance only when pemetrexed was the first treatment, given alone or together with gefitinib. Conversely, when gefitinib alone was administered first and pemetrexed sequentially alternated, a negative interaction was observed and no prevention of gefitinib resistance was documented. The mechanisms of resistance that developed in vivo included T790M mutation and EMT. The induction of EMT was a feature of tumors treated with gefitinib when given before pemetrexed, whereas T790M was recorded only in tumors treated with gefitinib alone. CONCLUSIONS: The combination of gefitinib and pemetrexed is effective in preventing gefitinib resistance; the application of intermittent treatments requires that gefitinib not be administered before pemetrexed.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pemetrexede/administração & dosagem , Quinazolinas/administração & dosagem
2.
Adv Healthc Mater ; 4(13): 2012-25, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26270628

RESUMO

Scaffolds for cardiac patch application must meet stringent requirements such as biocompatibility, biodegradability, and facilitate vascularization in the engineered tissue. Here, a bioactive, biocompatible, and biodegradable electrospun scaffold of poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) is proposed as a potential scaffold for cardiac patch application. The fibers are smooth bead free with average diameter = 0.8 ± 0.3 µm, mean pore size = 2.2 ± 1.2 µm, porosity = 62 ± 4%, and permeability higher than that of control biological tissue. For the first time, bioactive PGS-PCL fibers functionalized with vascular endothelial growth factor (VEGF) are developed, the approach used being chemical modification of the PGS-PCL fibers followed by subsequent binding of VEGF via amide bonding. The approach results in uniform immobilization of VEGF on the fibers; the concentrations are 1.0 µg cm(-2) for the PGS-PCL (H) and 0.60 µg cm(-2) for the PGS-PCL (L) samples. The bioactive scaffold supports the attachment and growth of seeded myogenic and vasculogenic cell lines. In fact, rat aortic endothelial cells also display angiogenic features indicating potential for the formation of vascular tree in the scaffold. These results therefore demonstrate the prospects of VEGF-functionalized PGS-PCL fibrous scaffold as promising matrix for cardiac patch application.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Alicerces Teciduais , Animais , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Decanoatos/química , Módulo de Elasticidade , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glicerol/análogos & derivados , Glicerol/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Miocárdio/citologia , Permeabilidade , Poliésteres/química , Polímeros/farmacologia , Porosidade , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo , Resistência à Tração , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Biomed Res Int ; 2015: 747864, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26137493

RESUMO

Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy.


Assuntos
Separação Celular/métodos , Células Endoteliais/citologia , Pulmão/citologia , Citometria de Fluxo , Humanos , Pulmão/cirurgia , Vasos Linfáticos/citologia
4.
Curr Drug Targets ; 16(8): 884-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25619752

RESUMO

The adult heart has the capacity to generate new myocytes that are markedly enhanced in acute and chronic heart failure of ischemic and non-ischemic origin. In addition, a pool of blood trafficking progenitor cells able to sense myocardial damage may home to the sites of injury participating to cardiac repair. This new view of myocardial biology leads to an expanding long-term research and therapeutic goals for cardioprotection. A fundamental concept to be analyzed is whether cardiac diseases are influenced by changes in the properties of tissue specific and circulating progenitors. Loss of self-renewal capacity, impaired growth or increased susceptibility to death may lead to a reduction of progenitors and leave myocardial damage unrepaired. Cardiac progenitors generate all myocardial cell lineages, thus impairment in their growth is expected to be critically involved in the structural and functional modifications of the heart. The fact that, in addition to well known effects of anthracyclines, also new drugs that target molecular pathways implicated in cell death and growth can be cardiotoxic further supports our hypothesis. Understanding the role of resident and extracardiac progenitors in the pathogenesis of cardiomyopathies of different etiology will provide not only a better comprehension of cardiac homeostasis but will also open new avenues for therapeutic interventions. The progress toward effective myocardial regeneration based on exploiting the self-renewal potential of the myocardium and the systemic pool of cardiogenic cells should advance the likelihood of efficient cardioprotection and restoration of cardiac function.


Assuntos
Cardiotônicos/farmacologia , Cardiopatias/prevenção & controle , Células-Tronco/fisiologia , Morte Celular/efeitos dos fármacos , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos
5.
Part Fibre Toxicol ; 11: 63, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487314

RESUMO

BACKGROUND: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS: We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS: Ventricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS: Acute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Ventrículos do Coração/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/fisiopatologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Dano ao DNA , Acoplamento Excitação-Contração/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/administração & dosagem , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Ratos Wistar , Titânio/administração & dosagem , Testes de Toxicidade Aguda
6.
Eur J Cardiothorac Surg ; 46(6): e103-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312525

RESUMO

OBJECTIVES: The aim of the present study was to characterize the biological properties and in vivo tumourigenic potential of mesenchymal cells (MCs) obtained from non-small-cell lung cancer (NSCLC) samples. METHODS: NSCLC samples (53 adenocarcinomas and 24 squamous-cell carcinomas) surgically removed from 46 males and 31 females were processed to identify mesenchymal cells from human lung cancer (hLc-MCs). hLc-MCs were separated from neoplastic epithelial cells, expanded and extensively characterized in vitro. Subsequently, female BALB/c nude mice were subcutaneously injected with either 10(6) or 2.5 × 10(6) Calu-3 (human adenocarcinoma cell line able to reproducibly induce xenografted tumours) alone or in combination with equal doses of hLc-MCs. Control animals were injected with the two doses of hLc-MCs only. RESULTS: Primary cultures of hLc-MCs were obtained from >80% of NSCLC specimens. The typical MCs immunophenotype was documented by the expression of CD90, CD105, CD73, CD13 and CD44 at fluorescence-activated cell sorting analysis. CD45, CD14, CD34 and epithelial antigens were negative while CD117 (c-kit) and CD133 (prominin) were partially expressed. Interestingly, nuclear transcription factors octamer-binding transcription factor 3/4 and sex determining region Y-box 2 involved in stemness, thyroid transcription factor 1 in bronchoalveolar commitment, and ETS1 in carcinogenesis, were expressed in hLc-MCs isolated from NSCLC. Specific conditioned media and cocultures confirmed the supportive role of hLc-MCs for cancer cells. In vivo experiments showed that at both doses Calu-3 xenografts doubled in size when hLc-MCs were coinjected. Cell tracking in xenografted tumours, by immunofluorescence combined with fluorescence in situ hybridization analysis, documented hX-chromosome-labelled, Calu-3-derived cytokeratin-positive adenocarcinoma structures surrounded by hLc-MCs. CONCLUSIONS: Tumour-propagating cells require the inductive interaction of resident mesenchymal cells to foster lung cancer development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Células-Tronco Neoplásicas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA