Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
medRxiv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39132493

RESUMO

There is growing recognition that earliest signs of autism need not clearly manifest in the first three years of life. To what extent is this variation in developmental trajectories associated with age at autism diagnosis? Does the genetic profile of autism vary with age at autism diagnosis? Using longitudinal data from four birth cohorts, we demonstrate that two different trajectories of socio-emotional behaviours are associated with age at diagnosis. We further demonstrate that the age at autism diagnosis is partly heritable (h 2 SNP = 0.12, s.e.m = 0.01), and is associated with two moderately correlated (r g = 0.38, s.e.m = 0.07) autism polygenic factors. One of these factors is associated with earlier diagnosis of autism, lower social and communication abilities in early childhood. The second factor is associated with later autism diagnosis, increased socio-emotional difficulties in adolescence, and has moderate to high positive genetic correlations with Attention-Deficit/Hyperactivity Disorder, mental health conditions, and trauma. Overall, our research identifies an axis of heterogeneity in autism, indexed by age at diagnosis, which partly explains heterogeneity in autism and the profiles of co-occurring neurodevelopmental and mental health profiles. Our findings have important implications for how we conceptualise autism and provide one model to explain some of the diversity within autism.

3.
Immunity ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053462

RESUMO

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.

4.
Autism Res ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984666

RESUMO

One of the candidate genes related to language variability in individuals with Autism Spectrum Disorder (ASD) is the contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin family. However, due to the different assessment tools used, it is unknown whether the polymorphisms of the CNTNAP2 gene are linked to structural language skills or more general communication abilities. A total of 302 youth aged 7 to 18 years participated in the present study: 131 verbal youth with ASD (62 female), 130 typically developing (TD) youth (64 female), and 41 unaffected siblings (US) of youth with ASD (25 female). Blood samples were collected to obtain genomic DNA and processed by the Rutgers University Cell and Data Repository or using standard protocols (Gentra Puregene Blood DNA extraction kit; Qiagen). Language and verbal communication skills were screened with the Clinical Evaluation of Language Fundamental-4 (CELF-4) and Vineland-II Communication domain, subsequently. The results showed that the polymorphism of CNTNAP2 (SNP rs2710102) was related to structural language abilities, such that participants carrying the A-allele had lower language skills in comparison to the G-allele homozygotes. No relationship was found between the polymorphism of CNTNAP2 and more general communication abilities. Although the study revealed genetic mechanisms that are associated with CELF-4 measures but not Vineland-II in youth with ASD, follow-up studies are needed that will include measures of language and communication that are less correlated to each other as well as will include a group of minimally and/or non-verbal individuals with ASD.

6.
Brain Behav Immun ; 121: 280-290, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032543

RESUMO

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.

7.
Brain Commun ; 6(3): fcae202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911266

RESUMO

While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.

8.
JAMA Psychiatry ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922630

RESUMO

Importance: Recurrent copy number variants (rCNVs) have been associated with increased risk of psychiatric disorders in case-control studies, but their population-level impact is unknown. Objective: To provide unbiased population-based estimates of prevalence and risk associated with psychiatric disorders for rCNVs and to compare risks across outcomes, rCNV dosage type (deletions or duplications), and locus features. Design, Setting, and Participants: This genetic association study is an analysis of data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) case-cohort sample of individuals born in Denmark in 1981-2008 and followed up until 2015, including (1) all individuals (n = 92 531) with a hospital discharge diagnosis of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder, major depressive disorder (MDD), or schizophrenia spectrum disorder (SSD) and (2) a subcohort (n = 50 625) randomly drawn from the source population. Data were analyzed from January 2021 to August 2023. Exposures: Carrier status of deletions and duplications at 27 autosomal rCNV loci was determined from neonatal blood samples genotyped on single-nucleotide variant microarrays. Main Outcomes and Measures: Population-based rCNV prevalence was estimated with a survey model using finite population correction to account for oversampling of cases. Hazard ratio (HR) estimates and 95% CIs for psychiatric disorders were derived using weighted Cox proportional hazard models. Risks were compared across outcomes, dosage type, and locus features using generalized estimating equation models. Results: A total of 3547 rCNVs were identified in 64 735 individuals assigned male at birth (53.8%) and 55 512 individuals assigned female at birth (46.2%) whose age at the end of follow-up ranged from 7.0 to 34.7 years (mean, 21.8 years). Most observed increases in rCNV-associated risk for ADHD, ASD, or SSD were moderate, and risk estimates were highly correlated across these disorders. Notable exceptions included high ASD-associated risk observed for Prader-Willi/Angelman syndrome duplications (HR, 20.8; 95% CI, 7.9-55). No rCNV was associated with increased MDD risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint but not with dosage type. Comparison with published case-control and community-based studies revealed a higher prevalence of deletions and lower associated increase in risk for several rCNVs in iPSYCH2015. Conclusions and Relevance: This study found that several rCNVs were more prevalent and conferred less risk of psychiatric disorders than estimated previously. Most case-control studies overestimate rCNV-associated risk of psychiatric disorders, likely because of selection bias. In an era where genetics is increasingly being clinically applied, these results highlight the importance of population-based risk estimates for genetics-based predictions.

9.
Sci Adv ; 10(21): eadn7655, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781333

RESUMO

Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.


Assuntos
Doença de Alzheimer , Transtorno Autístico , Encéfalo , Metilação de DNA , Esquizofrenia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Masculino , Feminino , Estudo de Associação Genômica Ampla , Idoso , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigenômica/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
10.
Sci Adv ; 10(21): eadj4452, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781344

RESUMO

Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.


Assuntos
Encéfalo , Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Humanos , Encéfalo/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Evolução Molecular , Transtornos Mentais/genética , Elementos Reguladores de Transcrição/genética , Neurônios/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Science ; 384(6698): eadh2602, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781372

RESUMO

Genomic profiling in postmortem brain from autistic individuals has consistently revealed convergent molecular changes. What drives these changes and how they relate to genetic susceptibility in this complex condition are not well understood. We performed deep single-nucleus RNA sequencing (snRNA-seq) to examine cell composition and transcriptomics, identifying dysregulation of cell type-specific gene regulatory networks (GRNs) in autism spectrum disorder (ASD), which we corroborated using single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) and spatial transcriptomics. Transcriptomic changes were primarily cell type specific, involving multiple cell types, most prominently interhemispheric and callosal-projecting neurons, interneurons within superficial laminae, and distinct glial reactive states involving oligodendrocytes, microglia, and astrocytes. Autism-associated GRN drivers and their targets were enriched in rare and common genetic risk variants, connecting autism genetic susceptibility and cellular and circuit alterations in the human brain.


Assuntos
Transtorno do Espectro Autista , Redes Reguladoras de Genes , Predisposição Genética para Doença , Análise de Célula Única , Transcriptoma , Feminino , Humanos , Masculino , Astrócitos/metabolismo , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Cromatina/metabolismo , Genômica , Interneurônios/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , RNA-Seq , Análise de Sequência de RNA , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
12.
Science ; 384(6698): eadh0829, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781368

RESUMO

Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.


Assuntos
Processamento Alternativo , Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Transtornos Mentais , Humanos , Atlas como Assunto , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/embriologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Locos de Características Quantitativas , Esquizofrenia/genética , Transcriptoma , Transtornos Mentais/genética
13.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559217

RESUMO

Autism Spectrum Disorder (ASD) is a highly heritable condition with diverse clinical presentations. Approximately 20% of ASD's genetic susceptibility is imparted by de novo mutations of major effect, most of which cause haploinsufficiency. We mapped enhancers of two high confidence autism genes - CHD8 and SCN2A and used CRISPR-based gene activation (CRISPR-A) in hPSC-derived excitatory neurons and cerebral forebrain organoids to correct the effects of haploinsufficiency, taking advantage of the presence of a wildtype allele of each gene and endogenous gene regulation. We found that CRISPR-A induced a sustained increase in CHD8 and SCN2A expression in treated neurons and organoids, with rescue of gene expression levels and mutation-associated phenotypes, including gene expression and physiology. These data support gene activation via targeting enhancers of haploinsufficient genes, as a therapeutic intervention in ASD and other neurodevelopmental disorders.

14.
Neurooncol Adv ; 6(1): vdae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616896

RESUMO

Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.

15.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496508

RESUMO

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

16.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492223

RESUMO

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Assuntos
Traumatismos do Nervo Óptico , beta-Glucanas , Animais , Neutrófilos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Mamíferos
17.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38496662

RESUMO

Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.

18.
medRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370677

RESUMO

Background: Previous studies have established a strong link between late-onset epilepsy (LOE) and Alzheimer's disease (AD). However, their shared genetic risk beyond the APOE gene remains unclear. Our study sought to examine the shared genetic factors of AD and LOE, interpret the biological pathways involved, and evaluate how AD onset may be mediated by LOE and shared genetic risks. Methods: We defined phenotypes using phecodes mapped from diagnosis codes, with patients' records aged 60-90. A two-step Least Absolute Shrinkage and Selection Operator (LASSO) workflow was used to identify shared genetic variants based on prior AD GWAS integrated with functional genomic data. We calculated an AD-LOE shared risk score and used it as a proxy in a causal mediation analysis. We used electronic health records from an academic health center (UCLA Health) for discovery analyses and validated our findings in a multi-institutional EHR database (All of Us). Results: The two-step LASSO method identified 34 shared genetic loci between AD and LOE, including the APOE region. These loci were mapped to 65 genes, which showed enrichment in molecular functions and pathways such as tau protein binding and lipoprotein metabolism. Individuals with high predicted shared risk scores have a higher risk of developing AD, LOE, or both in their later life compared to those with low-risk scores. LOE partially mediates the effect of AD-LOE shared genetic risk on AD (15% proportion mediated on average). Validation results from All of Us were consistent with findings from the UCLA sample. Conclusions: We employed a machine learning approach to identify shared genetic risks of AD and LOE. In addition to providing substantial evidence for the significant contribution of the APOE-TOMM40-APOC1 gene cluster to shared risk, we uncovered novel genes that may contribute. Our study is one of the first to utilize All of Us genetic data to investigate AD, and provides valuable insights into the potential common and disease-specific mechanisms underlying AD and LOE, which could have profound implications for the future of disease prevention and the development of targeted treatment strategies to combat the co-occurrence of these two diseases.

19.
Elife ; 122024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324465

RESUMO

The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Córtex Cerebral/fisiologia , Encéfalo/metabolismo , Neuroimagem/métodos , Processos Mentais , Biologia , Mapeamento Encefálico/métodos
20.
J Neurosurg Pediatr ; 33(1): 59-72, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890181

RESUMO

OBJECTIVE: Nonsyndromic craniosynostosis (nsCS), characterized by premature cranial suture fusion, is considered a primary skull disorder in which impact on neurodevelopment, if present, results from the mechanical hindrance of brain growth. Despite surgical repair of the cranial defect, neurocognitive deficits persist in nearly half of affected children. Therefore, the authors performed a functional genomics analysis of nsCS to determine when, where, and in what cell types nsCS-associated genes converge during development. METHODS: The authors integrated whole-exome sequencing data from 291 nsCS proband-parent trios with 29,803 single-cell transcriptomes of the prenatal and postnatal neurocranial complex to inform when, where, and in what cell types nsCS-mutated genes might exert their pathophysiological effects. RESULTS: The authors found that nsCS-mutated genes converged in cranial osteoprogenitors and pial fibroblasts and their transcriptional networks that regulate both skull ossification and cerebral neurogenesis. Nonsyndromic CS-mutated genes also converged in inhibitory neurons and gene coexpression modules that overlapped with autism and other developmental disorders. Ligand-receptor cell-cell communication analysis uncovered crosstalk between suture osteoblasts and neurons via the nsCS-associated BMP, FGF, and noncanonical WNT signaling pathways. CONCLUSIONS: These data implicate a concurrent impact of nsCS-associated de novo mutations on cranial morphogenesis and cortical development via cell- and non-cell-autonomous mechanisms in a developmental nexus of fetal osteoblasts, pial fibroblasts, and neurons. These results suggest that neurodevelopmental outcomes in nsCS patients may be driven more by mutational status than surgical technique.


Assuntos
Suturas Cranianas , Craniossinostoses , Criança , Gravidez , Feminino , Humanos , Suturas Cranianas/metabolismo , Crânio , Craniossinostoses/cirurgia , Neurogênese , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA