Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7463, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156798

RESUMO

Explosive caldera-forming eruptions eject voluminous magma during the gravitational collapse of the roof of the magma chamber. Caldera collapse is known to occur by rapid decompression of a magma chamber at shallow depth, however, the thresholds for magma chamber decompression that promotes caldera collapse have not been tested using examples from actual caldera-forming eruptions. Here, we investigated the processes of magma chamber decompression leading to caldera collapse using two natural examples from Aira and Kikai calderas in southwestern Japan. The analysis of water content in phenocryst glass embayments revealed that Aira experienced a large magmatic underpressure before the onset of caldera collapse, whereas caldera collapse occurred with a relatively small underpressure at Kikai. Our friction models for caldera faults show that the underpressure required for a magma chamber to collapse is proportional to the square of the depth to the magma chamber for calderas of the same horizontal size. This model explains why the relatively deep magma system of Aira required a larger underpressure for collapse when compared with the shallower magma chamber of Kikai. The distinct magma chamber underpressure thresholds can explain variations in the evolution of caldera-forming eruptions and the eruption sequences for catastrophic ignimbrites during caldera collapse.

2.
Sci Rep ; 10(1): 9406, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523102

RESUMO

Buoyant magmas abundant in exsolved volatiles (bubbles) drive the rapid upward-propagation of feeder dikes from magma chambers. The consequence of a feeder dike reaching the surface can result in an explosive volcanic eruption depending, partly, on the retention of volatiles. Therefore, timely detection of the vesicularity and overpressure of the magma during feeder dike ascent is critical for the prediction of the explosivity of any future eruption. In this study, we evaluated the explosivity of eruptions based on field investigations of the erupted products and the overpressure of magma in the conduit based on the dimensions of exposed feeder dikes. We found a positive correlation between the explosivity of eruptions and the magma overpressure generated in the conduit during recent fissure eruptions of Miyakejima volcano. Because the buoyancy of low-density magma produces positive overpressure at the dike's top, feeder dikes with highly-vesiculated magmas possess high amounts of overpressure. An enlargement of the opening width of a feeder dike by magmatic overpressure results in a higher flux of vesiculated magma, which causes vigorous explosive activity. Our results suggest the possibility of forecasting the explosivity of an impending eruption if the width (or opening) of an ascending feeder dike is monitored in real-time through measurements of ground deformation and seismicity induced by the dike.

3.
Sci Rep ; 9(1): 1979, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760833

RESUMO

Vigorous explosive eruptions that produce continuous high eruption plumes (Plinian eruptions) are generally assumed to tap a magma reservoir. The 1914 Plinian eruption at the Sakurajima volcano located on the Aira caldera rim is one such case, where the main magma reservoir was assumed to be located approximately 10 km beneath the caldera. However, we report that estimated magma storage depths immediately prior to the eruption were much shallower (0.9-3.2 km) on the basis of pressure at which volatiles within the phenocryst melt inclusions and plagioclase rims were finally equilibrated. The same is observed for two historic Plinian eruptions in 1471 and 1779. This depth is even shallower than the shallowest magma reservoir estimated from the pressure source for geodetic deformation during recent Vulcanian explosions (4 km beneath the crater). We propose that the magmas were fed from a thick conduit pre-charged from deeper reservoirs. The ground subsidence observed after 1914 within the Aira caldera may have been caused by conduit recharge following the eruption. Voluminous conduit recharge could be key to forecasting the next possible large eruption at the Sakurajima volcano.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA