RESUMO
Sport nutrition supplements (SNS) are vulnerable to adulteration with melamine, artificially augmenting their protein content as determined by conventional assay methodologies. Vibrational spectroscopy techniques are suitable for the detection of adulteration because they allow rapid analysis, require minimal sample preparation, and can perform numerous analyses in a short time. The aim of this study was to develop rapid quantification models for the determination of melamine adulteration in a variety of SNS matrices using NIRS (near-infrared spectroscopy) in combination with multivariate data processing. Moreover, a comparison of benchtop and portable NIR instruments was carried out. Employing a stepwise approach involving OPLS-DA and PLS analysis, matrix discrimination and prediction ability were investigated. The benchtop instrument effectively discriminated among matrices (R2Y = 0.964, Q2 = 0.933), while the portable device, although showing a slightly altered pattern, maintained favorable discrimination capability (R2Y = 0.966, Q2 = 0.931). The quantitative PLS models for each SNS matrix exhibited comparable statistical indicators for both instruments with reasonable errors for melamine content estimation and prediction (RMSEE: 0.3-2.4 %, RMSEP: 0.98-2.99 %). Higher estimation and prediction errors were observed for protein-containing samples in both acquisition modes, probably due to the tendency of protein agglomeration and adhesion to different surfaces, which affects the homogeneity of the powder. Despite data loss due to the narrower spectral range and lower resolution of the portable instrument, all models were found to be suitable for predicting melamine content in sport nutrition supplements.
Assuntos
Suplementos Nutricionais , Espectroscopia de Luz Próxima ao Infravermelho , Triazinas , Triazinas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Suplementos Nutricionais/análise , Contaminação de Alimentos/análiseRESUMO
The aim of this research was to develop a process analytical technology (PAT) tool for monitoring the transformation of the active ingredient ibuprofen into the fast-dissolving salt ibuprofen sodium during the wet granulation process. Two near-infrared (NIR) spectrophotometers, portable and benchtop spectrophotometer, were compared. During the analysis with the built models, both demonstrated comparable accuracy and precision (R2X = 0.995, R2Y = 0.927, Q2 = 0.995, and R2X = 0.990, R2Y = 0.948, Q2 = 0.992, respectively). Considering the applicability, a model based on the portable NIR spectroscopic data was chosen for further development and application as a PAT tool for monitoring different steps during the wet granulation process. The evaluation of the model's predictive capability involved analyzing laboratory trial batches with varying amounts of sodium carbonate, resulting in different concentrations of ibuprofen sodium at the end of the wet granulation process. Subsequently, tablets were manufactured from each trial batch, followed by dissolution analysis. The dissolution rate assays were in good agreement with the NIR-predicted concentrations of ibuprofen sodium at the end of the wet granulation process. Based on the results, the proposed model provides an excellent tool to monitor the ibuprofen acid-salt transformation, to determine the end-point of the reaction, and to efficiently control the wet granulation process.
Assuntos
Ibuprofeno , Espectroscopia de Luz Próxima ao Infravermelho , Ibuprofeno/análise , Ibuprofeno/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Comprimidos , SolubilidadeRESUMO
The objective of this study was to determine the mineral content in the leaves and flowers of wild-grown Sambucus nigra collected from eleven different locations in Kosovo. The samples were digested in a microwave system using the wet digestion method. The minerals were determined by the application of inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS). A total of 31 elements were determined, 15 elements by the ICP-AES method (Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, Sr, V, and Zn) and 16 elements by the ICP-MS method (Ag, As, Be, Bi, Cd, Co, Cs, Ga, Hg, In, Li, Ni, Pb, Rb, Tl, and U). The leaves of S. nigra show a higher content of minerals compared to the flowers, except for the flower of the sample SN-FL10, which is characterized by a high concentration of Fe, Al, Pb, Be, and Tl. The concentration of heavy metals and toxic elements (Pb, Cd, and Hg) was within the permissible concentrations according to Eur. Ph.
Assuntos
Mercúrio , Sambucus nigra , Cádmio , Chumbo , Minerais , FloresRESUMO
Objectives: The aim of this study was to determine the phenolic components in the flowers and leaves of wild-growing Sambucus nigra L. Materials and Methods: Plant materials were collected from eleven localities in Kosovo. Before LC-DAD-ESI-MSn analysis, an ultrasonic-assisted method with 70% methanol for 30 min extraction was used. Results: In total, 34 and 37 phenolic compounds were identified in flower and leaf extracts, respectively, with a total content of 61321.82-85961.64 mg/kg dry weight (DW) and 36136.62-93890.37 mg/kg DW. In all of the analyzed extracts, 15 phenolic acids, 20 flavonoids, one lignan, and one coumaroyl iridoid were detected. The major components were flavonoids, especially flavonols (quercetin-3-rutinoside, caffeoyl-kaempferol, and isorhamnetin-3-rutinoside), followed by phenolic acids (dicaffeoylquinic acid isomer, caffeic acid derivative, dicaffeoylquinic acid isomer, and dicaffeoylquinic acid isomer). Conclusion: In general, the methanolic extracts of flowers have shown higher polyphenolic content than those found in leaves. The multivariate statistical analysis of the phenolic content of the samples resulted in PLS-DA models with appropriate correlation coefficients of 0.903 and 0.921 for flower and leaf extracts, respectively. The models revealed distinctive clustering patterns, and the loading scatter plots depicted the unique phenolic compounds specific to each sample group.
RESUMO
The solid form landscape of sitagliptin phosphate was systematically evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray powder diffraction (XRPD), supported by a plethora of auxiliary analytical techniques. The preformulation experiments resulted in the transition of sitagliptin phosphate monohydrate into a new anhydrous form (designated as form IV), obtained after recrystallization from absolute ethanol. The anhydrous form IV remained stable under stressed conditions (1 month at 25 °C/60 %RH and 40 °C/75 %RH). On the other hand, thermal heating (dehydration) of sitagliptin phosphate monohydrate resulted in conversion into another anhydrous form II. Form II was found to be metastable, because after melting, under exposure at 40 °C/75 %RH for 1 month, or when dissolved in absolute ethanol converted to the stable anhydrous form IV of sitagliptin phosphate. A monotropic relationship was found between both studied anhydrous forms. Intrinsic dissolution tests revealed differences in the dissolution rates between the monohydrate and the anhydrous forms of sitagliptin phosphate. This research corrects the record with an accurate chemical composition of the anhydrous form IV of sitagliptin phosphate that was previously regarded as a hemiethanolate. In addition, the crystal structure of anhydrous form II of sitagliptin phosphate has been solved and reported for the first time.
Assuntos
Etanol , Fosfato de Sitagliptina , Temperatura , Solventes , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de CalorimetriaRESUMO
Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the hCMEC/D3 and SH-SY5Y cell lines as a model for the blood-brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (-24.30 mV to -31.20 mV). Stability studies implied that the nano-systems were stable in a physiologically relevant medium as well as human plasma, except nanoliposomes containing poloxamer on their surface, where there was an increase in particle size of ~26%. The presence of stealth polymer tends to decrease the amount of adsorbed proteins onto a particle's surface, according to protein adsorption studies. Both formulations of nanoliposomes were characterized by a low cytotoxicity, while their cell viability was reduced when incubated with the highest concentration (100 µg/mL) of nanostructured lipid formulations, which could have been associated with the consumption of cellular energy, thus resulting in a reduction in metabolic active cells. The uptake of all the nano-systems in the hCMEC/D3 and SH-SY5Y cell lines was successful, most likely following ATP-dependent internalization, as well as transport via passive diffusion.
RESUMO
Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.
RESUMO
Taking into consideration the latest reported beneficial anticolvusant effects of cannabidiol (CBD) and cannabiodiolic acid (CBDA) for clinical applications and the advantages of lipid nano-systems as carriers for targeted brain delivery, the aim of this study was set in direction of in vitro physico-chemical and biopharmaceutical characterization and in vivo evaluation of nanoliposomes and nanostructured lipid carriers loaded with Cannabis sativa extract intended for safe and efficient transport via blood-brain barrier and treatment of epilepsy. These nanoliposomes and nanostructured lipid formulations were characterized with z-average diameter <200 nm, following unimodal particle size distribution, negative values for Z-potential, high drug encapsulation efficiency and prolonged release during 24h (38.84-60.91 %). Prepared formulations showed statistically significant higher antioxidant capacity compared to the extract. The results from in vivo studies of the anticonvulsant activity demonstrated that all formulations significantly elevated the latencies for myoclonic, clonic and tonic seizures and, therefore, could be used in preventing different types of seizures. A distinction in the potential of the nano-systems was noted, which was probably anticipated by the type and the characteristics of the prepared formulations.
Assuntos
Cannabis , Epilepsia , Tamanho da Partícula , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Lipídeos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Assuntos
Canabinoides/análise , Cannabis/química , Compostos Fitoquímicos/análise , Animais , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Controle de Qualidade , Espectrofotometria Ultravioleta/métodosRESUMO
Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 µm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.
Assuntos
Doença de Alzheimer , Nanoestruturas , Salvia officinalis , Doença de Alzheimer/tratamento farmacológico , Preparações de Ação Retardada , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula , Extratos Vegetais/farmacologiaRESUMO
Reduced graphene oxide (rGO) is one of the graphene derivatives that can be employed to engineer bioactive and/or electroactive scaffolds. However, the influence of its low and especially high concentrations on scaffolds' overall properties and cytotoxicity has yet to be explored. In this study, polyethylene oxide (PEO)-based scaffolds containing from 0.1 to 20 wt% rGO were obtained by electrospinning. Morphological, thermal and electrical properties of the scaffolds were characterized by SEM, Raman spectroscopy, XRD, DSC and electrical measurements. The diameter of the fibers decreased from 0.52 to 0.19 µm as the concentration of rGO increased from 0.1 wt% to 20 wt%. The presence of rGO above the percolation threshold (5.7 wt%) resulted in a significantly reduced electrical resistivity of the scaffolds. XRD and Raman analysis revealed delamination of the graphene layers (interlayer spacing increased from 0.36 nm to 0.40-0.41 nm), and exfoliation of rGO was detected for the samples with an rGO concentration lower than 1 wt%. In addition, an evident trend of increasing cell viability as a function of the rGO concentration was evidenced. The obtained results can serve as further guidance for the judicious selection of the rGO content incorporated into the PEO matrix for constructing electroactive scaffolds.
Assuntos
Grafite/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Linhagem Celular , Sobrevivência Celular , Humanos , Análise Espectral Raman , Engenharia Tecidual , Difração de Raios XRESUMO
The decarboxylation of Δ9-tetrahydrocannabinolic acid (THCA) plays pivotal role in the potency of medical cannabis and its extracts. Our present work aims to draw attention to mid-infrared (MIR) spectroscopy to in-situ monitor and decipher the THCA decarboxylation reaction in the solid state. The initial TG/DTG curves of THCA, for a first time, outlined the solid-solid decarboxylation dynamics, defined the endpoint of the process and the temperature of the maximal conversion rate, which aided in the design of the further IR experiment. Temperature controlled IR spectroscopy experiments were performed on both THCA standard and cannabis flower by providing detailed band assignment and conducting spectra-structure correlations, based on the concept of functional groups vibrations. Moreover, a multivariate statistical analysis was employed to address the spectral regions of utmost importance for the THCA â THC interconversion process. The principal component analysis model was reduced to two PCs, where PC1 explained 94.76% and 98.21% of the total spectral variations in the THCA standard and in the plant sample, respectively. The PC1 plot score of the THCA standard, as a function of the temperature, neatly complemented to the TG/DTG curves and enabled determination of rate constants for the decarboxylation reaction undertaken on several selected temperatures. The predictive capability of MIR was further demonstrated with PLS (R2X = 0.99, R2Y = 0.994 and Q2 = 0.992) using thermally treated flower samples that covered broad range of THCA/THC content. Consequently, a progress in elucidation of kinetic models of THCA decarboxylation in terms of fitting the experimental data for both, solid state standard substance and a plant flower, was achieved. The results open the horizon to promote an appropriate process analytical technology (PAT) in the outgrowing medical cannabis industry.
Assuntos
Cannabis , Dronabinol , Descarboxilação , FloresRESUMO
Diclofenac sodium 0.1% is a commonly used NSAID with well-documented clinical efficacy in reducing postoperative inflammation; however, its corneal tolerability and ophthalmic tissue bioavailability require further improvement. Advanced micellar delivery systems composed of block-copolymers and chitosan showing fine balance between the mucoadhesion and mucus permeation, capable to slip through the mucus barrier and adhere to the epithelial ocular surface, may be used to tackle both challenges. The aggregation behaviour of the block-copolymers in the presence of different additives will dramatically influence the quality attributes like particle size, particle size distribution, drug-polymer interaction, zeta potential, drug incorporation, important for the delicate balance among mucoadhesion and permeation, as well as safety and efficacy of the ophthalmic micelles. Therefore, quality by design approach and D-optimal experimental design model were used to create a pool of useful data for the influence of chitosan and the formulation factors on the block copolymer's aggregation behaviour during the development and optimization of Diclofenac loaded Chitosan/Lutrol F127 or F68 micelles. Particle size, polydispersity index, dissolution rate, FTIR and DSC studies, NMR spectroscopy, cytotoxicity, mucoadhesivity, mucus permeation studies, and bioadhesivity were assessed as critical quality attributes. FTIR and DSC studies pointed to the chaotropic effect of chitosan during the micelle aggregation. Mainly, Pluronic F68 micellization behaviour was more dramatically affected by the presence of chitosan, and self-aggregation into larger micelles with high polydispersity index was favoured at higher chitosan concentration. The optimized formulation with highest potential for ophthalmic delivery of diclofenac sodium, good cytotoxicity profile, delicate balance of the mucoadhesivity, and mucus permeation was in the design space of Chitosan/Lutrol F127 micelles.
Assuntos
Quitosana , Micelas , Quitosana/química , Diclofenaco , Polímeros , TemperaturaRESUMO
Particle size distribution (PSD) is often considered as critical material attribute for active pharmaceutical ingredients (APIs), and the need for regular evaluation stands as an important quality control parameter in the pharmaceutical industry. Near-infrared (NIR) spectroscopy, used routinely for API identification, was introduced as analytical tool for simultaneous determination of particle size of ibuprofen. The demonstrated potential was highlighted by the development of rapid, robust, and noninvasive method coupled with multivariate data analysis (MVA), which can be easily transferred in QC laboratories for routine analysis. Principal component analysis (PCA) and partial least squares (PLS) regression analyses were performed on a calibration set of 61 ibuprofen samples, which differed in their median particle size Dv(50). The score scatterplots revealed evident clustering of ibuprofen samples according to their particle size, as well as occurrence of a distinctive outlying group of ibuprofen samples originating from one manufacturer. Further testing by means of mid-infrared spectroscopy, X-ray powder diffraction, and particle morphology analysis pinpointed particle morphology being responsible for the observed outlying group. Consequently, PLS class modeling based on particle morphology was introduced, which delivered two separate PLS regression models: one for blade-like ibuprofen crystals and another for irregular plate-like ibuprofen crystals. The former regression model exhibited high correlation coefficients and satisfactory predictive power (R2X = 0.999, R2Y = 0.917, Q2 = 0.901), whereas the latter demonstrated lower statistical indicators (R2X = 0.99, R2Y = 0.72, Q2 = 0.55). Additionally, the study underlines the importance of particle shape evaluation and sample classification according to particle morphology similarity prior to building NIRS-based regression models for PSD determination.
Assuntos
Ibuprofeno , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Tamanho da Partícula , PósRESUMO
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
RESUMO
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800-400 cm-1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.
Assuntos
Canabidiol , Cannabis , Dronabinol , Flores , Extratos Vegetais , TecnologiaRESUMO
Solid-state compatibility of API with excipients is essential step in the preformulation stage of early development of new finished dosage form. Thermal analysis and vibrational spectroscopy are complementary techniques that play a pivotal role to assess the solid-state compatibility of API with excipients. Their coupling and combination with multivariate analysis, provide valuable quantitative aspect to reveal the potential interactions. The impetus of this work was aimed to fully elucidate the solid-state compatibility of ibuprofen and magnesium stearate in binary mixtures comprising pharmaceutically acceptable amounts of magnesium stearate (0.25-5% w/w). Binary mixtures were analyzed before and after exposure at strictly controlled stress conditions (25 °C/60% relative humidity and 40 °C/75% relative humidity). Interaction between ibuprofen and magnesium stearate was unambiguously confirmed. The product of their interaction was synthetized separately, characterized by means of FTIR spectroscopy, DSC, TG/DTG and XRPD for the first time and identified as diibuprofen magnesium. The induced solid-state pseudopolymorphic transition of this product to diibuprofen magnesium tetrahydrate was also studied and discussed.
Assuntos
Ibuprofeno , Ácidos Esteáricos , Excipientes , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Content uniformity is a critical attribute for potent and low-dosage formulations of active pharmaceutical ingredient (API) that, in addition to the formulation parameters, plays pivotal role during pharmaceutical development and production. However, when API content is low, implementing a vibrational spectroscopic analytical tool to monitor the content and blend uniformity remains a challenging task. The aim of this study was to showcase the potentials of mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopy for quantitative analysis of alprazolam (ALZ) in a low-content powder blends with lactose, which is used as a common diluent for tablets produced by direct compression. The offered approach might be further scaled up and exploited for potential application in the process analytical technology (PAT). Partial least square and orthogonal PLS (OPLS) methodologies were employed to build the calibration models from raw and processed spectral data (standard normal variate, first and second derivatives). The models were further compared regarding their main statistical indicators: correlation coefficients, predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross-validation (RMSEEcv). All statistical models presented high regression and predictivity coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR, and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ NIR spectra and the major band overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup (resulting in a non-representative spectral acquisition of the sample) was regarded as a main limitation for the MIR-based calibration model. The OPLS models of the Raman spectra of the powder blends manifested favorable statistical indicators for the accuracy of the calibration model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman scattering calibration model was optimized in narrower scanning range (1700-700 cm-1) and its prediction power was evaluated (root mean square error of prediction, RMSEP = 0.03%). Thus, the Raman spectroscopy presented the most favorable statistical indicators in this comparative study and therefore should be further considered as a PAT for the quantitative determination of ALZ in low-content powder blends.
Assuntos
Alprazolam/química , Análise Espectral Raman , Química Farmacêutica , Composição de Medicamentos , Excipientes/química , Pós , ComprimidosRESUMO
BACKGROUND: Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS: Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS: Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION: Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Assuntos
Biomimética , Sistemas de Liberação de Medicamentos , Nanotecnologia , Polissacarídeos/química , Carragenina , Phaeophyceae/química , Rodófitas/química , Propriedades de SuperfícieRESUMO
Recent advances in understanding the etiology and pathogenesis of periodontal disease and polymicrobial synergy in the dysbiotic oral microbial community endorsed novel therapeutic targets and assured further improvement in periodontal disease treatment. Moreover, understanding of the events at the molecular level inspired the researchers to alleviate the stress from the disease by applying the bottom-up approach and delivering the drugs at the site of action, using nanoscale medicines. This review is focused on promising strategies for rational design of nanopaharmaceuticals for periodontal disease treatment based on novel therapeutic targets and the potential of advanced concepts for inflammation cascade targeting. Due to their size, nanomedicines are capable to interact with the elements of the immune system through cell receptor binding and to subsequently influence specific intracellular signaling pathways activation. They might also interfere with different signaling molecules continuously involved in the disease progression, in order to abolish cell activation and block the production of proinflammatory substances. Different biomacromolecules can be trafficked to the site of action using nanomedicines for gene targeting: i) decoy oligodeoxynucleotide (ODN) for suppression of NF-κB transcription activity, ii) DNA therapeutics for modulation of cell inflammatory response and iii) siRNA for cytokine production silencing. However, despite the potential of the nanotechnology for improvement of periodontal disease treatment, the translation of nano-drug delivery systems to clinical therapy is hindered by the lack of standard procedures for proper safety and efficacy profile evaluation.