Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058355

RESUMO

Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby outcompeting other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.


Assuntos
Cromossomos , Células Germinativas , Herança Paterna , Aves Canoras/genética , Animais , Análise Citogenética , DNA Mitocondrial , Evolução Molecular , Feminino , Haplótipos , Masculino , Filogenia , Aves Canoras/classificação , Espermatozoides
2.
Stem Cell Reports ; 16(4): 784-796, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33740464

RESUMO

The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.


Assuntos
Vetores Genéticos/metabolismo , Genoma , Células Germinativas/metabolismo , Lentivirus/genética , Aves Canoras/genética , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Proteínas de Fluorescência Verde/metabolismo , Masculino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Aves Canoras/sangue , Aves Canoras/embriologia , Transdução Genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA