Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 154(2): 455-468, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37778509

RESUMO

BACKGROUND: Palm oil (PO) is the most widely utilized plant oil for food production. Owing to the great ecologic problems associated with PO production, sustainably produced fats, such as insect fat, might be a suitable alternative. OBJECTIVES: The hypothesis was tested that fat from Hermetia illucens larvae (HF) compared with PO and soybean oil (SO) has no adverse effects on hepatic lipid metabolism, plasma metabolome, and cecal microbiome in obese Zucker rats. METHODS: Thirty male obese Zucker rats were randomly assigned to 3 groups (SO, PO, HF; n = 10 rats/group) and fed 3 different semisynthetic diets containing either SO, PO, or HF as the main fat source for 4 wk. The effects were evaluated by measurement of liver and plasma lipid concentrations, liver transcriptomics, targeted plasma metabolomics, and cecal microbiomics. RESULTS: Supplementation of HF reduced hepatic triglyceride concentration and messenger ribonucleic acid concentrations of selected genes involved in fatty acid and triglyceride synthesis in comparison to PO (P < 0.05). Pairwise comparison of the Simpson index and Jaccard index showed a higher cecal microbial α- and ß-diversity in rats fed the HF diet than in rats fed the PO diet (P = 0.015 and P = 0.027), but no difference between rats fed the diets with SO or PO. Taxonomic analysis of the cecal microbial community revealed a lower abundance of Clostridium_sensu_stricto_1 and a higher abundance of Blautia, Mucispirillum, Anaerotruncus, Harryflintia, and Peptococcus in rats supplemented with HF than in rats supplemented with PO (P < 0.05). CONCLUSIONS: HF, compared with PO, has liver lipid-lowering effects in obese Zucker rats, which may be caused by a shift in the gut microbial community. Thus, HF might serve as a sustainably produced fat alternative to PO for food production.


Assuntos
Dípteros , Microbioma Gastrointestinal , Ratos , Animais , Triglicerídeos , Óleo de Palmeira , Ratos Zucker , Gorduras na Dieta/farmacologia , Obesidade/metabolismo , Fígado/metabolismo , Óleo de Soja , Dípteros/metabolismo
2.
Animals (Basel) ; 13(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958111

RESUMO

Palm oil (PO) is currently the most widely used fat source for food production, but insect fat from Hermetia illucens larvae (HF) might be a suitable alternative fat source, because its production is less harmful to the environment. The present study investigated the effect of HF, as compared to PO and soybean oil (SO), on the hepatic lipid metabolism and the plasma metabolome of healthy rats, which were randomly assigned to three groups (n = 10 rats/group), and fed three different semi-synthetic diets containing either SO, PO, or HF as the main fat source for 4 weeks. Feed intake, body weight gain, liver and plasma lipid concentrations, and the hepatic mRNA levels of genes involved in lipid metabolism and inflammation did not differ between groups. Targeted plasma metabolomics revealed 294 out of 630 metabolites analyzed to be different between groups. Principal component analysis showed a clear separation of the plasma metabolomes of the SO group and the other two groups, but no separation of those of the PO and the HF groups. The present study shows that HF exerts no adverse metabolic effects in healthy rats, compared to PO or SO, indicating that HF is a safe alternative fat source to PO for food production.

3.
Nutrients ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678159

RESUMO

The present study tested the hypothesis that dietary insect meal from Hermetia illucens (HI) larvae attenuates the development of liver steatosis and hyperlipidemia in the obese Zucker rat. To test the hypothesis, a 4-week trial with male, obese Zucker rats (n = 30) and male, lean Zucker rats (n = 10) was performed. The obese rats were assigned to three obese groups (group O-C, group O-HI25, group O-HI50) of 10 rats each. The lean rats served as a lean control group (L-C). Group L-C and group O-C were fed a control diet with 20% casein as protein source, whereas 25% and 50% of the protein from casein was replaced with protein from HI larvae meal in the diets of group O-HI25 and O-HI50, respectively. The staining of liver sections with Oil red O revealed an excessive lipid accumulation in the liver of group O-C compared to group L-C, whereas liver lipid accumulation in group O-HI25 and O-HI50 was markedly reduced compared to group O-C. Hepatic concentrations of triglycerides, cholesterol, C14:0, C16:0, C16:1, C18:0, C18:1, the sum of total fatty acids and hepatic mRNA levels of several genes associated with lipid synthesis and plasma concentration of cholesterol were markedly higher in group O-C than in group L-C, but lower in group O-HI50 than in group O-C (p < 0.05). In conclusion, partial replacement of casein by HI larvae meal attenuates liver steatosis and dyslipidemia in obese Zucker rats. This suggests that HI larvae meal serves as a functional food protecting from obesity-induced metabolic disorders.


Assuntos
Dípteros , Fígado Gorduroso , Masculino , Ratos , Animais , Ratos Zucker , Larva , Caseínas/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Dípteros/metabolismo , Triglicerídeos , Colesterol
4.
Food Funct ; 13(3): 1421-1436, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35048923

RESUMO

Insect biomass obtained from large-scale mass-rearing of insect larvae has gained considerable attention in recent years as an alternative and sustainable source of food and feed. A byproduct from mass-rearing of insect larvae is the shed cuticles - the most external components of insects which are a relevant source of the polysaccharide chitin. While it has been shown that chitin modulates the gut microbiota and ameliorates lipid metabolic disorders in obese rodent models, feeding studies dealing with isolated insects' cuticles are completely lacking. Thus, the present study tested the hypothesis that dietary insects' cuticles modulate the gut microbiome and improve hepatic lipid metabolism in obese Zucker rats. To test this hypothesis, three groups of obese Zucker rats were fed a nutrient-adequate, semisynthetic basal diet which was supplemented with either 0% (group O), 1.5% (group O1.5) or 3.0% (group O3.0) Tenebrio molitor cuticles at the expense of cellulose. Oil red O-stained liver sections showed a marked lipid accumulation, but lipid accumulation was clearly less in group O3.0 than in groups O and O1.5. In line with this, hepatic lipid concentrations were 30% lower in group O3.0 than in group O (p < 0.05). No differences were observed across the obese groups regarding liver concentrations of methionine, S-adenosylmethionine and homocysteine. Analysis of cecal microbial community at the family level revealed that the relative abundances of Bifidobacteriaceae, Coriobacteriaceae Erysipelotrichaceae, Lactobacillaceae, Prevotellaceae, Sutterellaceae, unknown Deltaproteobacteria and unknown Firmicutes were higher and those of Anaeroplasmataceae, Desulfovibrionaceae, Eubacteriaceae, Ruminococcaceae, Saccharibacteria and unknown Clostridiales were lower in group O3.0 compared to group O (p < 0.05). Cecal digesta concentrations of total short-chain fatty acids, acetate and butyrate were higher in group O3.0 than in group O (p < 0.05). Targeted plasma metabolomics revealed 53 metabolites differing between groups, amongst which two indole metabolites, indole-3-propionic acid and 3-indoxylsulfate, were markedly elevated in group O3.0 compared to groups O1.5 and O. Regarding that increased abundances of bacteria of the Actinobacteria phylum and Lactobacillaceae family in the gut have been reported to be associated with antisteatotic, hepatoprotective and antiinflammatory effects, the pronounced increases of Bifidobacteriaceae and Coriobacteriaceae (both Actinobacteria), and of Lactobacillaceae in group O3.0 might have contributed to the amelioration of fatty liver.


Assuntos
Ração Animal , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade , Tenebrio , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Larva , Masculino , Distribuição Aleatória , Ratos , Ratos Zucker
5.
Animals (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611740

RESUMO

Induction of FGF21 expression in the liver and a significant increase in plasma FGF21 concentration have been demonstrated in cows during early lactation, but knowledge about the function of FGF21 in dairy cows remains limited. In order to improve the understanding of the physiological role of FGF21 in dairy cows, the present study aimed to investigate differences in metabolic pathways between dairy cows with high and low hepatic expression of FGF21 at week 1 of lactation (n = 8/group) by liver transcriptomics, targeted plasma metabolomics, and analysis of inflammatory and oxidative stress-related parameters. Dry matter intake, energy balance, milk yield, and energy-corrected milk yield at days 8−14 postpartum did not differ between cows with high and low hepatic FGF21 expression. However, cows with high FGF21 expression showed an upregulation of genes involved in endoplasmic reticulum stress, inflammation, and nuclear factor E2-related factor 2 (Nrf2)-dependent cytoprotection compared to cows with low FGF21 expression at week 1 postpartum (p < 0.05). Concentrations of important antioxidants (tocopherols, ß-carotene, and glutathione) in the liver and plasma, trolox equivalent antioxidant capacity in plasma, concentrations of oxidative stress-related compounds (thiobarbituric acid-reactive substances and protein carbonyls), and levels of most acute phase proteins at week 1 postpartum did not differ between cows with high or low FGF21 expression. Moreover, among a total of >200 metabolites assayed in the plasma, concentrations of only 7 metabolites were different between cows with high or low FGF21 expression (p < 0.05). Overall, the results showed that cows with high and low FGF21 hepatic expression had only moderate differences in metabolism, but FGF21 might be important in the adaptation of dairy cows to stress conditions during early lactation.

6.
J Anim Sci Biotechnol ; 12(1): 97, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517929

RESUMO

Fibroblast growth factor 21 (FGF21) has been identified as an important regulator of carbohydrate and lipid metabolism, which plays an important role for metabolic regulation, particularly under conditions of energy deprivation or stress conditions. Dairy cows are subjected to a negative energy balance and various kinds of stress particularly during the periparturient phase and during early lactation. It has been shown that the plasma concentration of FGF21 in dairy cows is dramatically increased at parturition and remains high during the first weeks of lactation. This finding suggests that FGF21 might exert similar functions in dairy cows than in other species, such as mice or humans. However, the role of FGF21 in dairy cows has been less investigated so far. Following a brief summary of the previous findings about the function of FGF21 in humans and mice, the present review aims to present the current state of knowledge about the role of FGF21 in dairy cows. The first part of the review deals with the tissue localization of FGF21 and with conditions leading to an upregulation of FGF21 expression in the liver of dairy cows. In the second part, the influence of nutrition on FGF21 expression and the role of FGF21 for metabolic diseases in dairy cows is addressed. In the third part, findings of exogenous FGF21 application on metabolism in dairy cows are reported. Finally, the potential relevance of FGF21 in dairy cows is discussed. It is concluded that FGF21 might be of great importance for metabolic adaptation to negative energy balance and stress conditions in dairy cows. However, further studies are needed for a better understanding of the functions of FGF21 in dairy cows.

7.
Arch Anim Nutr ; 75(4): 237-250, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251937

RESUMO

Insect meal (IM) produced from edible insects, such as Tenebrio molitor, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from Tenebrio molitor larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from Tenebrio molitor larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (p < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and Tenebrio molitor larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from Tenebrio molitor larvae can be regarded as a safe source of protein in growing pigs.


Assuntos
Tenebrio , Ração Animal/análise , Animais , Antioxidantes , Galinhas , Dieta/veterinária , Larva , Masculino , Suínos
8.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063487

RESUMO

Conflicting reports exist with regard to the effect of ecdysterone, the predominating representative of steroid hormones in insects and plants, on hepatic and plasma lipid concentrations in different rodent models of obesity, fatty liver, and diabetes, indicating that the effect is dependent on the rodent model used. Here, the hypothesis was tested for the first time that ecdysterone causes lipid-lowering effects in genetically obese Zucker rats. To test this hypothesis, two groups of male obese Zucker rats (n = 8) were fed a nutrient-adequate diet supplemented without or with 0.5 g ecdysterone per kg diet. To study further if ecdysterone is capable of alleviating the strong lipid-synthetic activity in the liver of obese Zucker rats, the study included also two groups of male lean Zucker rats (n = 8) which also received either the ecdysterone-supplemented or the non-supplemented diet. While hepatic and plasma concentrations of triglycerides and cholesterol were markedly higher in the obese compared to the lean rats (p < 0.05), hepatic and plasma triglyceride and cholesterol concentrations did not differ between rats of the same genotype fed the diets without or with ecdysterone. In conclusion, the present study clearly shows that ecdysterone supplementation does not exhibit lipid-lowering actions in the liver and plasma of lean and obese Zucker rats.


Assuntos
Ecdisterona/metabolismo , Ecdisterona/farmacologia , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Animais , Suplementos Nutricionais , Frutosamina/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Zucker , Reprodutibilidade dos Testes
9.
J Proteomics ; 242: 104255, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33957313

RESUMO

Hepatic steatosis is a very common response to liver injury and often attributed to metabolic disorders. Prior studies have demonstrated the efficacy of a biotechnologically produced oyster mushroom (Pleurotus sajor-caju, PSC) in alleviating hepatic steatosis in obese Zucker rats. This study aims to elucidate molecular events underlying the anti-steatotic effects of PSC. Tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS/MS was used to quantify and compare proteins in the livers of lean Zucker rats fed a control diet (LC), obese Zucker rats fed the same control diet (OC) and obese Zucker rats fed the control diet supplemented with 5% PSC (OPSC) for 4 weeks. Using this technique 3128 proteins could be quantified, out of which 108 were differentially abundant between the OPSC and OC group. Functional enrichment analysis of the up-regulated proteins showed that these proteins were mainly involved in metabolic processes, while the down-regulated proteins were involved in inflammatory processes. Results from proteomic analysis were successfully validated for two up-regulated (carbonic anhydrase 3, regucalcin) and two down-regulated (cadherin-17, ceruloplasmin) proteins by means of immunoblotting. SIGNIFICANCE: Valorization of low-grade agricultural waste by edible fungi, such as the mushroom Pleurotus sajor-caju (PSC), represents a promising strategy for the production of protein rich biomass since they boast of a unique enzyme system that has the ability to recover nutrients and energy from biodegradable waste. Herein, we describe the metabolic effects of PSC feeding using a combined quantitative proteomics and bioinformatics approach. In total, 108 proteins were identified to be regulated by PSC feeding in the liver of the obese rats. Complementary usage of a bioinformatics approach allowed us to decipher the mechanisms underlying the recently observed lipid-lowering and anti-inflammatory activity of PSC feeding in obese Zucker rats, namely a reduction of fatty acid synthesis, an improvement of hepatoprotective mechanisms and an enhancement of anti-inflammatory effects.


Assuntos
Pleurotus , Animais , Cromatografia Líquida , Lentinula , Fígado , Obesidade , Proteômica , Ratos , Ratos Zucker , Espectrometria de Massas em Tandem
10.
Animals (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799520

RESUMO

Swine Inflammation and Necrosis Syndrome can lead to severe clinical signs, especially in tails, ears, teats, and claws in pigs. Clinical and histopathological findings in newborn piglets with intact epidermis indicate a primarily endogenous etiology, and microbial-associated molecular patterns (MAMPs), such as lipopolysaccharide (LPS) are assumed to play a central role in the development of the syndrome. We hypothesized that swine inflammation and necrosis syndrome (SINS) is indirectly triggered by gut-derived MAMPs entering the circulatory system via the liver and thereby causing derangements on liver metabolism. To test this hypothesis, metabolomes, candidate genes of the liver and liver transcriptomes of 6 piglets with high-grade clinical signs of SINS (SINS high) were examined and compared with 6 piglets without significant signs of SINS (SINS low). Several hepatic pro-inflammatory genes and genes involved in stress response were induced in piglets of the SINS high group. The most striking finding from hepatic transcript profiling and bioinformatic enrichment was that the most enriched biological processes associated with the approximately 220 genes induced in the liver of the SINS high group were exclusively related to metabolic pathways, such as fatty acid metabolic process. Within the genes (≈390) repressed in the liver of the SINS high group, enriched pathways were ribosome biogenesis, RNA processing, RNA splicing, spliceosome, and RNA transport. The transcriptomic findings were supported by the results of the metabolome analyses. These results provide the first evidence for the induction of an inflammatory process in the liver of piglets suffering from SINS, accompanied by lipid metabolic derangement.

11.
J Agric Food Chem ; 69(5): 1524-1535, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497213

RESUMO

Mushrooms are a rich source of dietary fiber. This study aimed to characterize the modulation of colonic microbiota in Zucker rats after supplementing their diet with a biotechnologically produced oyster mushroom (Pleurotus sajor-caju). Microbiota composition and short chain fatty acids (SCFAs) in the colon and bile acids in the plasma of the rats were analyzed to assess the effects of P. sajor-caju supplementation on the microbiota in the colon and its interplay with the host in the event of hepatic steatosis. Microbiota profiles were distinctly modulated by P. sajor-caju supplementation between the obese control rats and the obese rats fed the 5% P. sajor-caju-supplemented diet. P. sajor-caju enhanced the growth of SCFAs-producing bacterial genera, including Faecalibaculum, Bifidobacterium, Roseburia, and Blautia, and decreased the relative abundance of the pathogenic genus Escherichia-Shigella. This was also accompanied by distinct changes in the concentrations of bile acids in the plasma and concentrations of SCFAs in the colon, supporting the initial potentiality of P. sajor-caju as a prebiotic in cases of hepatic steatosis and liver inflammation.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Pleurotus/química , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Colo/metabolismo , Colo/microbiologia , Fibras na Dieta , Ácidos Graxos Voláteis/metabolismo , Masculino , Prebióticos/análise , Ratos , Ratos Zucker
12.
Animals (Basel) ; 10(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167600

RESUMO

In this study, the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) in excess of the National Research Council (NRC) recommendations improves the antioxidant system in broilers was investigated. Day-old male Cobb-500 broilers (n = 72) were divided into three groups which were fed a control diet or diets supplemented with two levels of DLM in which the concentrations of Met + Cys exceeded the recommendations of NRC by 15-20% (group DLM 1) or 30-40% (group DLM 2), respectively. The three groups of broilers did not show differences in body weight gains, feed intake, and feed conversion ratio. However, broilers of groups DLM 1 and DLM 2 had higher concentrations of glutathione (GSH) in liver and thigh muscle and lower concentrations of cholesterol oxidation products (COPs) in heat-processed thigh muscle than broilers of the control group. Concentrations of several oxidation products of phytosterols in heat-processed thigh muscle were also reduced in groups DLM 1 and DLM 2; however, the concentration of total oxidation products of phytosterols was not different between the three groups. The study shows that DLM supplementation improved the antioxidant status due to an increased formation of GSH and reduced the formation of COPs during heat-processing in thigh muscle.

13.
Poult Sci ; 99(12): 6837-6847, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248599

RESUMO

Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.


Assuntos
Antioxidantes , Galinhas , Suplementos Nutricionais , Temperatura Alta , Metionina , Estresse Oxidativo , Ração Animal/análise , Animais , Antioxidantes/análise , Galinhas/metabolismo , Dieta/veterinária , Masculino , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Plasma/enzimologia
14.
Biomolecules ; 10(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878262

RESUMO

The study aimed to test the hypothesis that monomethyl branched-chain fatty acids (BCFAs) and a lipid extract of Conidiobolus heterosporus (CHLE), rich in monomethyl BCFAs, are able to activate the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Rat Fao cells were incubated with the monomethyl BCFAs 12-methyltridecanoic acid (MTriA), 12-methyltetradecanoic acid (MTA), isopalmitic acid (IPA) and 14-methylhexadecanoic acid (MHD), and the direct activation of PPARalpha was evaluated by reporter gene assay using a PPARalpha responsive reporter gene. Furthermore, Fao cells were incubated with different concentrations of the CHLE and PPARalpha activation was also evaluated by using the reporter gene assay, and by determining the mRNA concentrations of selected PPARalpha target genes by real-time RT-PCR. The reporter gene assay revealed that IPA and the CHLE, but not MTriA, MHD and MTA, activate the PPARalpha responsive reporter gene. CHLE dose-dependently increased mRNA concentrations of the PPARalpha target genes acyl-CoA oxidase (ACOX1), cytochrome P450 4A1 (CYP4A1), carnitine palmitoyltransferase 1A (CPT1A) and solute carrier family 22 (organic cation/carnitine transporter), member 5 (SLC22A5). In conclusion, the monomethyl BCFA IPA is a potent PPARalpha activator. CHLE activates PPARalpha-dependent gene expression in Fao cells, an effect that is possibly mediated by IPA.


Assuntos
Conidiobolus/química , Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genes Reporter , PPAR alfa/agonistas , Ratos
15.
Mol Nutr Food Res ; 64(22): e2000591, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32997875

RESUMO

SCOPE: Sustainable protein sources are needed to meet the increasing protein demands of a continuously growing world population. This study is focused on the biotechnological production of a protein rich oyster mushroom (Pleurotus sajor-caju; PSC) by valorization of an agricultural side stream and the evaluation of the physiological effects of PSC in a rat model of metabolic syndrome. METHODS AND RESULTS: PSC is produced via submerged cultivation in a 150 L bioreactor that utilizes isomaltulose molasses as its sole carbon source, and is further analyzed for its nutritional composition. A feeding trial is performed using Zucker rats which are fed a 5% PSC supplemented diet, for 4 weeks. Biochemical analyses reveal a significant reduction of the liver lipid concentrations and liver inflammation in the PSC fed obese rats in comparison to the obese rats from the control group. Hepatic qPCR analyses, differential transcript profiling, and enzyme activity measurements reveal a number of altered pathways that may be responsible for these anti-steatotic and anti-inflammatory effects of the mushroom. CONCLUSION: Bioconversion of a low quality agricultural side stream to an improved protein source is performed by submerged cultured PSC, and the obtained mycelium shows strong anti-steatotic and anti-inflammatory effects.


Assuntos
Biotecnologia/métodos , Lentinula , Valor Nutritivo , Obesidade/dietoterapia , Pleurotus/química , Animais , Citocinas/sangue , Suplementos Nutricionais , Expressão Gênica , Hiperlipidemias/dietoterapia , Inflamação/sangue , Inflamação/genética , Lentinula/química , Lentinula/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Obesidade/metabolismo , Ratos Zucker
16.
Animals (Basel) ; 10(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645939

RESUMO

The hypothesis tested was that dietary inclusion of insect meal (IM) causes an alteration in the cecal microbiota composition and its fermentation activity of growing pigs. Five-week-old male crossbred pigs were randomly assigned to three groups of 10 pigs each, and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor larvae for four weeks. The relative abundance of the phylum Bacteroidetes was lower in group IM10 than in group CON (p < 0.05), whereas the relative abundance of Firmicutes and the Firmicutes:Bacteroidetes-ratio tended to be higher in groups IM10 and IM5 than in group CON (p < 0.1). The relative abundance of the Proteobacteria tended to be higher in group IM10 than in groups CON and IM5 (p < 0.1). The concentrations of the total short-chain fatty acids in the cecal digesta did not differ between the three groups, but the concentrations of the branched-chain fatty acids in the cecal digesta were higher in group IM5 and IM10 than in group CON (p < 0.05). The present study shows for the first time that the replacement of soybean meal by Tenebrio molitor larvae meal causes a shift of the cecal microbial community and its fermentation activity in growing pigs.

17.
J Anim Sci Biotechnol ; 11: 57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518649

RESUMO

BACKGROUND: We hypothesised that supplementation of green tea extract (GTE) in dairy cows during the transition period can attenuate proinflammatory conditions and prevent endoplasmic reticulum (ER) stress in the liver of these cows. Thirty Holstein cows with an average parity of 3.06 (± 1.31, SD) were divided into a control group and a group that received a daily amount of 10 g of GTE from d 7 before the calving day and a daily amount of 20 g of GTE from the day of calving until d 7 of lactation. RESULTS: Cows supplemented with GTE did not show differences in energy intake or milk yield in weeks 2-7 of lactation. However, these cows had a lower milk fat concentration and a lower energy corrected milk yield than the control cows and showed a trend of improved energy balance. The relative mRNA concentrations of proinflammatory genes, genes involved in the acute phase reaction and antioxidant genes in the liver in weeks 1, 4 and 7 of lactation were not different between the two groups of cows. The concentrations of α-tocopherol and the Trolox equivalent antioxidant capacity in plasma were not different between the two groups. However, the group supplemented with GTE showed significant reductions of some genes of the unfolded protein response (UPR) in week 1 and a trend of lower liver triacylglycerol (TAG) concentrations in the liver compared to the control group. CONCLUSIONS: This study shows that supplementation of GTE in dairy cows lowers the fat concentration in the milk but overall has no effect on the expression of inflammatory genes and the antioxidative status in dairy cows during early lactation. The finding of reduced mRNA levels of genes involved in the UPR at week 1, however, supports other results showing that supplementation of polyphenols could prevent the development of ER stress in the liver of cows during early lactation. The finding of a tendency towards a reduced TAG concentration in the liver of cows supplemented with GTE might be due to an improved energy balance in these cows.

18.
Nutrients ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252339

RESUMO

The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While group C received a diet with casein, the IM-fed groups received a diet with IM as the protein source. In groups IM + Met, IM + Cys and IM + EAA, the diets were additionally supplemented with methionine, cysteine and essential amino acids (EAA), respectively. Hepatic concentrations of triacylglycerols and cholesterol, and hepatic mRNA levels and activities of lipogenic and cholesterogenic enzymes were markedly lower in the IM-fed groups than in group C (p < 0.05). All of these parameters either did not differ across the IM-fed groups or were only slightly higher in groups IM + Met, IM + Cys and IM+EAA than in the group IM. In conclusion, the results indicate that a difference in the amino acid composition between IM and casein, a low concentration of methionine in IM and a reduced cysteine synthesis secondary to a decreased methionine availability resulting from feeding IM are not causative for the lipid-lowering effect of IM.


Assuntos
Aminoácidos Essenciais/metabolismo , Aminoácidos Sulfúricos/metabolismo , Proteínas Alimentares/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Sulfúricos/administração & dosagem , Animais , Caseínas/metabolismo , Cisteína/metabolismo , Proteínas Alimentares/administração & dosagem , Insetos , Lipídeos/análise , Masculino , Ratos , Ratos Zucker
19.
Metabolites ; 10(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244770

RESUMO

Recently, administration of nicotinic acid (NA) at a pharmacological dose was found to induce a similar change in the muscle´s contractile and metabolic phenotype as observed in response to endurance exercise. Thus, the hypothesis was tested that combined NA administration and endurance exercise promotes the adaptation of muscle to regular exercise and improves the endurance performance to a greater extent than exercise alone. Thus, 30 adult mice were randomly divided into three groups of 10 mice/group. The control and the exercise (EX) group received an adequate NA diet, while the EX + NA group received a high NA diet. Mice of the EX and the EX + NA group were subjected to a treadmill endurance exercise program five times/week during the experimental period of 42 days. At day 41, endurance performance was greater in the EX + NA group than in the control and the EX group (P < 0.05). Mice of the EX + NA group had a higher type IIA (+60%) and a lower type IIB (-55%) fiber percentage in gastrocnemius (GN) muscle than control mice (P < 0.05), while the type I fiber percentage in GN muscle tended to be increased (+100%) in the EX + NA group compared to the control group (P = 0.051). In the EX + NA group, glycogen concentration (+15%) and mRNA levels of two glycolytic (+70-80%) and two glycogenolytic enzymes (+80-120%) in GN muscle were increased compared to the control group (P < 0.05). In conclusion, feeding a high NA diet induces changes in skeletal muscle fiber composition and improves endurance performance of mice subjected to regular endurance exercise.

20.
J Anim Sci Biotechnol ; 11: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158542

RESUMO

BACKGROUND: The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 30 male, 5-week-old crossbred pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor L. for 4 weeks and key metabolic tissues (liver, muscle, plasma) were analyzed using omics-techniques. RESULTS:  Most performance parameters did not differ across the groups, whereas ileal digestibilities of most amino acids were 6.7 to 15.6%-units lower in IM10 than in CON (P < 0.05). Transcriptomics of liver and skeletal muscle revealed a total of 166 and 198, respectively, transcripts differentially expressed between IM10 and CON (P < 0.05). Plasma metabolomics revealed higher concentrations of alanine, citrulline, glutamate, proline, serine, tyrosine and valine and a lower concentration of asparagine in IM10 than in CON (P < 0.05). Only one out of fourteen quantifiable amino acid metabolites, namely methionine sulfoxide (MetS), in plasma was elevated by 45% and 71% in IM5 and IM10, respectively, compared to CON (P < 0.05). Plasma concentrations of both, major carnitine/acylcarnitine species and bile acids were not different across groups. Lipidomics of liver and plasma demonstrated no differences in the concentrations of triacylglycerols, cholesterol and the main phospholipids, lysophospholipids and sphingolipids between groups. The percentages of all individual phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in the liver showed no differences between groups, except those with 6 double bonds (PC 38:6, PC 40:6, PE 38:6, PE 40:6), which were markedly lower in IM10 than in CON (P < 0.05). In line with this, the percentage of C22:6n-3 in hepatic total lipids was lower in IM10 than in the other groups (P < 0.05). CONCLUSIONS: Comprehensive analyzes of the transcriptome, lipidome and metabolome of key metabolic tissues indicate that partial or complete replacement of a conventional protein source by IM in the diet has only a weak impact on the intermediary metabolism of growing pigs. Thus, it is concluded that IM from Tenebrio molitor L. can be used as a dietary source of protein in pigs without causing adverse effects on metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA