Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(5): ziae019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634075

RESUMO

Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that cannot easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of 3 long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from 2 populations of genetic diversity. Additionally, we compared how intrabone relationships varied in the 2 populations. Our first population of genetic diversity included 72 females and 72 males from the 8 inbred founder strains used to create the Diversity Outbred (DO) population. These 8 strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the 2 populations of genetic diversity, we show that each DO mouse does not resemble a single inbred founder, but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intrabone relationships (eg, ultimate force vs. cortical area) were mainly conserved in our 2 populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.

2.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333124

RESUMO

Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that can't easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of three long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from two populations of genetic diversity. Additionally, we compared how intra-bone relationships varied in the two populations. Our first population of genetic diversity included 72 females and 72 males from the eight Inbred Founder strains used to create the Diversity Outbred (DO) population. These eight strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the two populations of genetic diversity, we show each DO mouse does not resemble a single Inbred Founder but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intra-bone relationships (e.g., ultimate force vs. cortical area) were mainly conserved in our two populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.

3.
J Biomed Mater Res B Appl Biomater ; 82(1): 37-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17078076

RESUMO

Carbon nanotubes present a new material for the construction of electrodes for electrochemical devices such as batteries, capacitors, and actuators. Such electrodes require high conductivity, strength, and surface area. The latter two requirements are often incompatible. Electrodes composed entirely of carbon nanotubes (bucky paper) have high surface areas but are typically weak, and have insufficient conductivity for practical macroscopic applications. Here we report a technique that uses naturally occurring biopolymers to produce electrodes (free standing films) that exhibit conductivities of 300 S/cm. These composites also have considerable mechanical strength (up to 145 MPa) and sufficient specific capacitance of 19-27 F/g to enable them to be used as freestanding electrodes. One potential application that deserves special attention is that of biocompatible electrodes, where the binder is a biopolymer already used in a range of implants. Preliminary studies reported here show that the new carbon nanotube biopolymer electrodes can foster prolific L929 cell growth.


Assuntos
Quitosana/química , DNA de Cadeia Simples/química , Microeletrodos , Nanotubos de Carbono/química , Animais , Biopolímeros/química , Linhagem Celular , Proliferação de Células , Capacitância Elétrica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA