Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21454, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293684

RESUMO

The sources of animal odours are highly diverse, yet their ecological importance, in host-vector communication, remains unexplored. Here, using the camel (host)-Stomoxys calcitrans (vector) interaction, we collected and analyzed the Volatile Organic Compounds (VOCs) of camels from four of its different odour sources: breath, body (skin), urine, and dung. On non-metric model multivariate analyses of VOCs we show that substantial chemo-diversity exists between metabolic products associated with an individual camel. VOCs from the four metabolic products were distinct and widely segregated. Next, we show electrophysiologically, that VOCs shared between metabolic products activated more Olfactory Sensory Neurons (OSNs) and elicited strong behavioural attractive responses from S. calcitrans under field conditions independent of geography. In our extended studies on house flies, the behavioural response to these VOCs appears to be conserved. Overall, our results establish that VOCs from a range of metabolic products determine host-vector ecological interactions and may provide a more rigorous approach for discovery of unique and more potent attractants.


Assuntos
Camelus/fisiologia , Insetos Vetores/fisiologia , Muscidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Camelus/parasitologia , Feminino , Interações Hospedeiro-Parasita , Odorantes/análise , Compostos Orgânicos Voláteis/análise
2.
Front Cell Neurosci ; 5: 5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720521

RESUMO

Insect odorant receptors (ORs) have a unique design of heterodimers formed by an olfactory receptor protein and the ion channel Orco. Heterologously expressed insect ORs are activated via an ionotropic and a metabotropic pathway that leads to cAMP production and activates the Orco channel. The contribution of metabotropic signaling to the insect odor response remains to be elucidated. Disruption of the G(q) protein signaling cascade reduces the odor response (Kain et al., 2008). We investigated this phenomenon in HEK293 cells expressing Drosophila Orco and found that phospholipase C (PLC) inhibition reduced the sensitivity of Orco to cAMP. A similar effect was seen upon inhibition of protein kinase C (PKC), whereas PKC stimulation activated Orco even in the absence of cAMP. Mutation of the five PKC phosphorylation sites in Orco almost completely eliminated sensitivity to cAMP. To test the impact of PKC activity in vivo we combined single sensillum electrophysiological recordings with microinjection of agents affecting PLC and PKC function and observed an altered response of olfactory sensory neurons (OSNs) to odorant stimulation. Injection of the PLC inhibitor U73122 or the PKC inhibitor Gö6976 into sensilla reduced the OSN response to odor pulses. Conversely, injection of the PKC activators OAG, a diacylglycerol analog, or phorbol myristate acetate (PMA) enhanced the odor response. We conclude that metabotropic pathways affecting the phosphorylation state of Orco regulate OR function and thereby shape the OSN odor response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA