Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 891519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034669

RESUMO

Poly(acrylamide-co-acrylic acid) (P(AAm-co-AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm-co-AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0-12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength (I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient (µ), which decreased with increasing AA concentration. P(AAm-co-AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity (µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) (µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm-co-AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface.

2.
Chem Sci ; 11(19): 5028-5036, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34122959

RESUMO

A series of catalyst-free, room temperature dynamic bonds derived from a reversible thia-Michael reaction are utilized to access mechanically robust dynamic covalent network films. The equilibrium of the thiol addition to benzalcyanoacetate-based Michael-acceptors can be directly tuned by controlling the electron-donating/withdrawing nature of the Michael-acceptor. By modulating the composition of different Michael-acceptors in a dynamic covalent network, a wide range of mechanical properties and thermal responses can be realized. Additionally, the reported systems phase-separate in a process, coined dynamic reaction-induced phase separation (DRIPS), that yields reconfigurable phase morphologies and reprogrammable shape-memory behaviour as highlighted by the heat-induced folding of a predetermined structure.

3.
J Vis Exp ; (148)2019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31282896

RESUMO

The fabrication of devices containing thin film composite membranes necessitates the transfer of these films onto the surfaces of arbitrary support substrates. Accomplishing this transfer in a highly controlled, mechanized, and reproducible manner can eliminate the creation of macroscale defect structures (e.g., tears, cracks, and wrinkles) within the thin film that compromise device performance and the usable area per sample. Here, we describe a general protocol for the highly controlled and mechanized transfer of a polymeric thin film onto an arbitrary porous support substrate for eventual use as a water filtration membrane device. Specifically, we fabricate a block copolymer (BCP) thin film on top of a sacrificial, water-soluble poly(acrylic acid) (PAA) layer and silicon wafer substrate. We then utilize a custom-designed, 3D-printed transfer tool and drain chamber system to deposit, lift-off, and transfer the BCP thin film onto the center of a porous anodized aluminum oxide (AAO) support disc. The transferred BCP thin film is shown to be consistently placed onto the center of the support surface due to the guidance of the meniscus formed between the water and the 3D-printed plastic drain chamber. We also compare our mechanized transfer-processed thin films to those that have been transferred by hand with the use of tweezers. Optical inspection and image analysis of the transferred thin films from the mechanized process confirm that little-to-no macroscale inhomogeneities or plastic deformations are produced, as compared to the multitude of tears and wrinkles produced from manual transfer by hand. Our results suggest that the proposed strategy for thin film transfer can reduce defects when compared to other methods across many systems and applications.


Assuntos
Resinas Acrílicas/química , Membranas Artificiais , Silício/química , Óxido de Alumínio/química , Porosidade , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA