Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Artif Intell ; 7: 1398844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873178

RESUMO

Active learning is a field of machine learning that seeks to find the most efficient labels to annotate with a given budget, particularly in cases where obtaining labeled data is expensive or infeasible. This is becoming increasingly important with the growing success of learning-based methods, which often require large amounts of labeled data. Computer vision is one area where active learning has shown promise in tasks such as image classification, semantic segmentation, and object detection. In this research, we propose a pool-based semi-supervised active learning method for image classification that takes advantage of both labeled and unlabeled data. Many active learning approaches do not utilize unlabeled data, but we believe that incorporating these data can improve performance. To address this issue, our method involves several steps. First, we cluster the latent space of a pre-trained convolutional autoencoder. Then, we use a proposed clustering contrastive loss to strengthen the latent space's clustering while using a small amount of labeled data. Finally, we query the samples with the highest uncertainty to annotate with an oracle. We repeat this process until the end of the given budget. Our method is effective when the number of annotated samples is small, and we have validated its effectiveness through experiments on benchmark datasets. Our empirical results demonstrate the power of our method for image classification tasks in accuracy terms.

2.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177474

RESUMO

One of the most challenging problems associated with the development of accurate and reliable application of computer vision and artificial intelligence in agriculture is that, not only are massive amounts of training data usually required, but also, in most cases, the images have to be properly labeled before models can be trained. Such a labeling process tends to be time consuming, tiresome, and expensive, often making the creation of large labeled datasets impractical. This problem is largely associated with the many steps involved in the labeling process, requiring the human expert rater to perform different cognitive and motor tasks in order to correctly label each image, thus diverting brain resources that should be focused on pattern recognition itself. One possible way to tackle this challenge is by exploring the phenomena in which highly trained experts can almost reflexively recognize and accurately classify objects of interest in a fraction of a second. As techniques for recording and decoding brain activity have evolved, it has become possible to directly tap into this ability and to accurately assess the expert's level of confidence and attention during the process. As a result, the labeling time can be reduced dramatically while effectively incorporating the expert's knowledge into artificial intelligence models. This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition. Experiments have demonstrated the viability of the approach, with accuracies improving from 96% with the baseline model to 99% using brain generated labels and active learning approach.


Assuntos
Ondas Encefálicas , Patologia Vegetal , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Eletroencefalografia
3.
PLoS One ; 17(1): e0261947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995285

RESUMO

OBJECTIVE: The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson's disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. BACKGROUND: Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. METHODS: Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. RESULTS: The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). CONCLUSIONS: This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Potenciais Evocados , Aprendizado de Máquina , Doença de Parkinson , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia
4.
Front Syst Neurosci ; 15: 747681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744647

RESUMO

Introduction: Precise lead localization is crucial for an optimal clinical outcome of subthalamic nucleus (STN) deep brain stimulation (DBS) treatment in patients with Parkinson's disease (PD). Currently, anatomical measures, as well as invasive intraoperative electrophysiological recordings, are used to locate DBS electrodes. The objective of this study was to find an alternative electrophysiology tool for STN DBS lead localization. Methods: Sixty-one postoperative electrophysiology recording sessions were obtained from 17 DBS-treated patients with PD. An intraoperative physiological method automatically detected STN borders and subregions. Postoperative EEG cortical activity was measured, while STN low frequency stimulation (LFS) was applied to different areas inside and outside the STN. Machine learning models were used to differentiate stimulation locations, based on EEG analysis of engineered features. Results: A machine learning algorithm identified the top 25 evoked response potentials (ERPs), engineered features that can differentiate inside and outside STN stimulation locations as well as within STN stimulation locations. Evoked responses in the medial and ipsilateral fronto-central areas were found to be most significant for predicting the location of STN stimulation. Two-class linear support vector machine (SVM) predicted the inside (dorso-lateral region, DLR, and ventro-medial region, VMR) vs. outside [zona incerta, ZI, STN stimulation classification with an accuracy of 0.98 and 0.82 for ZI vs. VMR and ZI vs. DLR, respectively, and an accuracy of 0.77 for the within STN (DLR vs. VMR)]. Multiclass linear SVM predicted all areas with an accuracy of 0.82 for the outside and within STN stimulation locations (ZI vs. DLR vs. VMR). Conclusions: Electroencephalogram biomarkers can use low-frequency STN stimulation to localize STN DBS electrodes to ZI, DLR, and VMR STN subregions. These models can be used for both intraoperative electrode localization and postoperative stimulation programming sessions, and have a potential to improve STN DBS clinical outcomes.

5.
Front Neurosci ; 15: 622329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584189

RESUMO

15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We assessed the ability of the EEG analysis algorithm Brain Network Analysis (BNA) to measure cognitive function in 15q13.3 deletion patients, and to differentiate between patient and control groups. EEG data was collected from 10 individuals with 15q13.3 microdeletion syndrome (14-18 years of age), as well as 30 age-matched healthy controls, as the subjects responded to Auditory Oddball (AOB) and Go/NoGo cognitive tasks. It was determined that BNA can be used to evaluate cognitive function in 15q13.3 microdeletion patients. This analysis also significantly differentiates between patient and control groups using 5 scores, all of which are produced from ERP peaks related to late cortical components that represent higher cognitive functions of attention allocation and response inhibition (P < 0.05).

6.
Brain Inj ; 34(7): 871-880, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32508153

RESUMO

STUDY DESIGN: Prospective longitudinal cohort study. BACKGROUND: Adolescent athletes may be more susceptible to the long-term effects of mild traumatic brain injury (mTBI). A diagnostic and prognostic neuromarker may optimize management and return-to-activity decision-making in athletes who experience mTBI. OBJECTIVE: Measure an event-related potential (ERP) component captured with electroencephalography (EEG), called processing negativity (PN), at baseline and post-injury in adolescents who suffered mTBI and determine their longitudinal response relative to healthy controls. METHODS: Thirty adolescents had EEG recorded during an auditory oddball task at a pre-mTBI baseline session and subsequent post-mTBI sessions. Longitudinal EEG data from patients and healthy controls (n= 77) were obtained from up to four sessions in total and processed using Brain Network Analysis algorithms. RESULTS: The average PN amplitude in healthy controls significantly decreased over sessions 2 and 3; however, it remained steady in the mTBI group's 2nd (post-mTBI) session and decreased only in sessions 3 and 4. Pre- to post-mTBI amplitude changes correlated with the time interval between sessions. CONCLUSION: These results demonstrate that PN amplitude changes may be associated with mTBI exposure and subsequent recovery in adolescent athletes. Further study of PN may lead to it becoming a neuromarker for mTBI prognosis and return-to-activity decision-making in adolescents.


Assuntos
Concussão Encefálica , Adolescente , Eletroencefalografia , Potenciais Evocados , Humanos , Estudos Longitudinais , Estudos Prospectivos
7.
Sensors (Basel) ; 19(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717361

RESUMO

This paper presents a global monocular indoor positioning system for a robotic vehicle starting from a known pose. The proposed system does not depend on a dense 3D map, require prior environment exploration or installation, or rely on the scene remaining the same, photometrically or geometrically. The approach presents a new way of providing global positioning relying on the sparse knowledge of the building floorplan by utilizing special algorithms to resolve the unknown scale through wall⁻plane association. This Wall Plane Fusion algorithm presented finds correspondences between walls of the floorplan and planar structures present in the 3D point cloud. In order to extract planes from point clouds that contain scale ambiguity, the Scale Invariant Planar RANSAC (SIPR) algorithm was developed. The best wall⁻plane correspondence is used as an external constraint to a custom Bundle Adjustment optimization which refines the motion estimation solution and enforces a global scale solution. A necessary condition is that only one wall needs to be in view. The feasibility of using the algorithms is tested with synthetic and real-world data; extensive testing is performed in an indoor simulation environment using the Unreal Engine and Microsoft Airsim. The system performs consistently across all three types of data. The tests presented in this paper show that the standard deviation of the error did not exceed 6 cm.

8.
Brain Topogr ; 32(1): 66-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076487

RESUMO

Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging (CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG. Even though these methods exhibit good performance, most of them have inherent inaccuracies that originate from their operating principles that constrain the solution or require a complex calculation process. The back-projection CPI (BP-CPI) method is relatively new and has the advantage of being constraint-free and computation inexpensive. The method has shown relatively good accuracy, which is necessary to become a clinical tool. However, better performance must be achieved. In the present study, two improvements are proposed. Both are embedded as adjacent stages to the BP-CPI and are based on the multi-resolution optimization approach (MR-CPI). A series of Monte-Carlo simulations were performed to examine the characteristics of the proposed improvements. Additional tests were done, including different EEG noise levels and variation in electrode-numbers. The results showed highly accurate cortical potential estimations, with a reduction in estimation error by a factor of 3.75 relative to the simple BP-CPI estimation error. We also validated these results with true EEG data. Analyzing these EEGs, we have demonstrated the MR-CPI competence to correctly localize cortical activations in a real environment. The MR-CPI methods were shown to be reliable for estimating cortical potentials, enabling researchers to obtain fast and robust high-resolution EEGs.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Modelos Neurológicos , Simulação por Computador , Humanos , Método de Monte Carlo , Neuroimagem/métodos
9.
Can J Neurol Sci ; 45(4): 451-461, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880078

RESUMO

BACKGROUND: Post-stroke depression (PSD) is the most frequent psychiatric complication following ischemic stroke. It affects up to 60% of all patients and is associated with increased morbidity and mortality following ischemic stroke. The pathophysiology of PSD remains elusive and appears to be multifactorial, rather than "purely" biological or psychosocial in origin. Thus, valid animal models of PSD would contribute to the study of the etiology (and treatment) of this disorder. METHODS: The present study depicts a rat model for PSD, using middle cerebral artery occlusion (MCAO). The two-way shuttle avoidance task, Porsolt forced-swim test, and sucrose preference test were employed to assess any depression-like behavior. Localized brain expressions of brain-derived neurotrophic factor (BDNF) protein levels were evaluated to examine the possible involvement of the brain neuronal plasticity in the observed behavioral syndrome. The raw data were subjected to unsupervised fuzzy clustering (UFC) algorithms to assess the sensitivity of bio-behavioral measures indicative of depressive symptoms post MCAO. RESULTS: About 56% of the rats developed significant depressive-like behavioral disruptions as a result of MCAO compared with 4% in the sham-operated control rats. A pattern of a depressive-like behavioral response was common to all affected MCAO animals, characterized by significantly more escape failures and reduced number of total avoidance shuttles, a significant elevation in immobility duration, and reduced sucrose preference. Significant downregulations of BDNF protein levels in the hippocampal sub-regions, frontal cortex, and hypothalamus were observed in all affected MCAO animals. CONCLUSION: The UFC analysis supports the behavioral analysis and thus, lends validity to our results.


Assuntos
Aprendizagem da Esquiva/fisiologia , Depressão/metabolismo , Depressão/fisiopatologia , Comportamento Exploratório/fisiologia , Animais , Encéfalo/metabolismo , Infarto Encefálico/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Análise por Conglomerados , Depressão/etiologia , Modelos Animais de Doenças , Preferências Alimentares/psicologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Exame Neurológico , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Sacarose/administração & dosagem , Natação/psicologia
10.
J Electrocardiol ; 50(5): 620-625, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28641860

RESUMO

OBJECTIVE: We have previously used a 12-lead, signal-processed ECG to calculate blood potassium levels. We now assess the feasibility of doing so with a smartphone-enabled single lead, to permit remote monitoring. PATIENTS AND METHODS: Twenty-one hemodialysis patients held a smartphone equipped with inexpensive FDA-approved electrodes for three 2min intervals during hemodialysis. Individualized potassium estimation models were generated for each patient. ECG-calculated potassium values were compared to blood potassium results at subsequent visits to evaluate the accuracy of the potassium estimation models. RESULTS: The mean absolute error between the estimated potassium and blood potassium 0.38±0.32 mEq/L (9% of average potassium level) decreasing to 0.6 mEq/L using predictors of poor signal. CONCLUSIONS: A single-lead ECG acquired using electrodes attached to a smartphone device can be processed to calculate the serum potassium with an error of 9% in patients undergoing hemodialysis. SUMMARY: A single-lead ECG acquired using electrodes attached to a smartphone can be processed to calculate the serum potassium in patients undergoing hemodialysis remotely.


Assuntos
Eletrocardiografia/métodos , Hiperpotassemia/diagnóstico , Falência Renal Crônica/sangue , Potássio/sangue , Smartphone , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Diálise Renal , Processamento de Sinais Assistido por Computador
11.
IEEE Trans Med Imaging ; 36(7): 1583-1595, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28362583

RESUMO

Electroencephalography (EEG) is the single brain monitoring technique that is non-invasive, portable, passive, exhibits high-temporal resolution, and gives a directmeasurement of the scalp electrical potential. Amajor disadvantage of the EEG is its low-spatial resolution, which is the result of the low-conductive skull that "smears" the currents coming from within the brain. Recording brain activity with both high temporal and spatial resolution is crucial for the localization of confined brain activations and the study of brainmechanismfunctionality, whichis then followed by diagnosis of brain-related diseases. In this paper, a new cortical potential imaging (CPI) method is presented. The new method gives an estimation of the electrical activity on the cortex surface and thus removes the "smearing effect" caused by the skull. The scalp potentials are back-projected CPI (BP-CPI) onto the cortex surface by building a well-posed problem to the Laplace equation that is solved by means of the finite elements method on a realistic head model. A unique solution to the CPI problem is obtained by introducing a cortical normal current estimation technique. The technique is based on the same mechanism used in the well-known surface Laplacian calculation, followed by a scalp-cortex back-projection routine. The BP-CPI passed four stages of validation, including validation on spherical and realistic head models, probabilistic analysis (Monte Carlo simulation), and noise sensitivity tests. In addition, the BP-CPI was compared with the minimum norm estimate CPI approach and found superior for multi-source cortical potential distributions with very good estimation results (CC >0.97) on a realistic head model in the regions of interest, for two representative cases. The BP-CPI can be easily incorporated in different monitoring tools and help researchers by maintaining an accurate estimation for the cortical potential of ongoing or event-related potentials in order to have better neurological inferences from the EEG.


Assuntos
Encéfalo , Mapeamento Encefálico , Eletroencefalografia , Humanos , Modelos Neurológicos , Crânio
12.
Front Neurol ; 7: 74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375546

RESUMO

OBJECTIVES: Utilize a prospective in vivo clinical trial to evaluate the potential for mild neck compression applied during head impact exposure to reduce anatomical and physiological biomarkers of brain injury. METHODS: This project utilized a prospective randomized controlled trial to evaluate effects of mild jugular vein (neck) compression (collar) relative to controls (no collar) during a competitive hockey season (males; 16.3 ± 1.2 years). The collar was designed to mildly compress the jugular vein bilaterally with the goal to increase intracranial blood volume to reduce risk of brain slosh injury during head impact exposure. Helmet sensors were used to collect daily impact data in excess of 20 g (games and practices) and the primary outcome measures, which included changes in white matter (WM) microstructure, were assessed by diffusion tensor imaging (DTI). Specifically, four DTI measures: fractional anisotropy, mean diffusivity (MD), axial diffusivity, and radial diffusivity (RD) were used in the study. These metrics were analyzed using the tract-based Spatial Statistics (TBSS) approach - a voxel-based analysis. In addition, electroencephalography-derived event-related potentials were used to assess changes in brain network activation (BNA) between study groups. RESULTS: For athletes not wearing the collar, DTI measures corresponding to a disruption of WM microstructure, including MD and RD, increased significantly from pre-season to mid-season (p < 0.05). Athletes wearing the collar did not show a significant change in either MD or RD despite similar accumulated linear accelerations from head impacts (p > 0.05). In addition to these anatomical findings, electrophysiological network analysis of the degree of congruence in the network electrophysiological activation pattern demonstrated concomitant changes in brain network dynamics in the non-collar group only (p < 0.05). Similar to the DTI findings, the increased change in BNA score in the non-collar relative to the collar group was statistically significant (p < 0.01). Changes in DTI outcomes were also directly correlated with altered brain network dynamics (r = 0.76; p < 0.05) as measured by BNA. CONCLUSION: Group differences in the longitudinal changes in both neuroanatomical and electrophysiological measures, as well as the correlation between the measures, provide initial evidence indicating that mild jugular vein compression may have reduced alterations in the WM response to head impacts during a competitive hockey season. The data indicate sport-related alterations in WM microstructure were ameliorated by application of jugular compression during head impact exposure. These results may lead to a novel line of research inquiry to evaluate the effects of protecting the brain from sports-related head impacts via optimized intracranial fluid dynamics.

13.
Behav Brain Res ; 308: 128-42, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27105958

RESUMO

It is unclear whether the poor autonomic flexibility or dysregulation observed in patients with posttraumatic stress disorder (PTSD) represents a pre-trauma vulnerability factor or results from exposure to trauma. We used an animal model of PTSD to assess the association between the behavioral response to predator scent stress (PSS) and the cardiac autonomic modulation in male and female rats. The rats were surgically implanted with radiotelemetry devices to measure their electrocardiograms and locomotor activity (LMA). Following baseline telemetric monitoring, the animals were exposed to PSS or sham-PSS. Continuous telemetric monitoring (24h/day sampling) was performed over the course of 7days. The electrocardiographic recordings were analyzed using the time- and frequency-domain indexes of heart rate variability (HRV). The behavioral response patterns were assessed using the elevated plus maze and acoustic startle response paradigms for the retrospective classification of individuals according to the PTSD-related cut-off behavioral criteria. During resting conditions, the male rats had significantly higher heart rates (HR) and lower HRV parameters than the female rats during both the active and inactive phases of the daily cycle. Immediately after PSS exposure, both the female and male rats demonstrated a robust increase in HR and a marked drop in HRV parameters, with a shift of sympathovagal balance towards sympathetic predominance. In both sexes, autonomic system habituation and recovery were selectively inhibited in the rats whose behavior was extremely disrupted after exposure to PSS. However, in the female rats, exposure to the PSS produced fewer EBR rats, with a more rapid recovery curve than that of the male rats. PSS did not induce changes to the circadian rhythm of the LMA. According to our results, PTSD can be conceptualized as a disorder that is related to failure-of-recovery mechanisms that impede the restitution of physiological homeostasis.


Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Caracteres Sexuais , Transtornos de Estresse Pós-Traumáticos/complicações , Estresse Psicológico/fisiopatologia , Estimulação Acústica , Análise de Variância , Animais , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Frequência Cardíaca/fisiologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Telemetria
14.
J Am Heart Assoc ; 5(1)2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26811164

RESUMO

BACKGROUND: Hyper- and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life threatening. A noninvasive, unobtrusive, blood-free method for tracking potassium would be an important clinical advance. METHODS AND RESULTS: Two groups of hemodialysis patients (development group, n=26; validation group, n=19) underwent high-resolution digital ECG recordings and had 2 to 3 blood tests during dialysis. Using advanced signal processing, we developed a personalized regression model for each patient to noninvasively calculate potassium values during the second and third dialysis sessions using only the processed single-channel ECG. In addition, by analyzing the entire development group's first-visit data, we created a global model for all patients that was validated against subsequent sessions in the development group and in a separate validation group. This global model sought to predict potassium, based on the T wave characteristics, with no blood tests required. For the personalized model, we successfully calculated potassium values with an absolute error of 0.36±0.34 mmol/L (or 10% of the measured blood potassium). For the global model, potassium prediction was also accurate, with an absolute error of 0.44±0.47 mmol/L for the training group (or 11% of the measured blood potassium) and 0.5±0.42 for the validation set (or 12% of the measured blood potassium). CONCLUSIONS: The signal-processed ECG derived from a single lead can be used to calculate potassium values with clinically meaningful resolution using a strategy that requires no blood tests. This enables a cost-effective, noninvasive, unobtrusive strategy for potassium assessment that can be used during remote monitoring.


Assuntos
Eletrocardiografia/métodos , Hiperpotassemia/diagnóstico , Hipopotassemia/diagnóstico , Potássio/metabolismo , Diálise Renal , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Algoritmos , Biomarcadores/metabolismo , Feminino , Humanos , Hiperpotassemia/etiologia , Hiperpotassemia/metabolismo , Hipopotassemia/etiologia , Hipopotassemia/metabolismo , Masculino , Pessoa de Meia-Idade , Potássio/sangue , Valor Preditivo dos Testes , Estudos Prospectivos , Análise de Regressão , Diálise Renal/efeitos adversos , Reprodutibilidade dos Testes , Fatores de Tempo
15.
Front Comput Neurosci ; 10: 130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066220

RESUMO

Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task. In rapid serial visual presentation (RSVP) tasks, the subject is presented with a continuous stream of images containing rare target images among standard images, while the algorithm has to detect brain activity associated with target images. In this work, we suggest a multimodal neural network for RSVP tasks. The network operates on the brain response and on the initiating stimulus simultaneously, providing more information for the BCI application. We present two variants of the multimodal network, a supervised model, for the case when the targets are known in advanced, and a semi-supervised model for when the targets are unknown. We test the neural networks with a RSVP experiment on satellite imagery carried out with two subjects. The multimodal networks achieve a significant performance improvement in classification metrics. We visualize what the networks has learned and discuss the advantages of using neural network models for BCI applications.

16.
Front Comput Neurosci ; 10: 137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066224

RESUMO

The purpose of this study was to introduce an improved tool for automated classification of event-related potentials (ERPs) using spatiotemporally parcellated events incorporated into a functional brain network activation (BNA) analysis. The auditory oddball ERP paradigm was selected to demonstrate and evaluate the improved tool. Methods: The ERPs of each subject were decomposed into major dynamic spatiotemporal events. Then, a set of spatiotemporal events representing the group was generated by aligning and clustering the spatiotemporal events of all individual subjects. The temporal relationship between the common group events generated a network, which is the spatiotemporal reference BNA model. Scores were derived by comparing each subject's spatiotemporal events to the reference BNA model and were then entered into a support vector machine classifier to classify subjects into relevant subgroups. The reliability of the BNA scores (test-retest repeatability using intraclass correlation) and their utility as a classification tool were examined in the context of Target-Novel classification. Results: BNA intraclass correlation values of repeatability ranged between 0.51 and 0.82 for the known ERP components N100, P200, and P300. Classification accuracy was high when the trained data were validated on the same subjects for different visits (AUCs 0.93 and 0.95). The classification accuracy remained high for a test group recorded at a different clinical center with a different recording system (AUCs 0.81, 0.85 for 2 visits). Conclusion: The improved spatiotemporal BNA analysis demonstrates high classification accuracy. The BNA analysis method holds promise as a tool for diagnosis, follow-up and drug development associated with different neurological conditions.

17.
J Pain ; 17(1): 14-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456677

RESUMO

Despite promising preliminary results in treating fibromyalgia (FM) pain, no neuromodulation technique has been adopted in clinical practice because of limited efficacy, low response rate, or poor tolerability. This phase II open-label trial aims to define a methodology for a clinically effective treatment of pain in FM by establishing treatment protocols and screening procedures to maximize efficacy and response rate. High-definition transcranial direct current stimulation (HD-tDCS) provides targeted subthreshold brain stimulation, combining tolerability with specificity. We aimed to establish the number of HD-tDCS sessions required to achieve a 50% FM pain reduction, and to characterize the biometrics of the response, including brain network activation pain scores of contact heat-evoked potentials. We report a clinically significant benefit of a 50% pain reduction in half (n = 7) of the patients (N = 14), with responders and nonresponders alike benefiting from a cumulative effect of treatment, reflected in significant pain reduction (P = .035) as well as improved quality of life (P = .001) over time. We also report an aggregate 6-week response rate of 50% of patients and estimate 15 as the median number of HD-tDCS sessions to reach clinically meaningful outcomes. The methodology for a pivotal FM neuromodulation clinical trial with individualized treatment is thus supported. ONLINE REGISTRATION: Registered in Clinicaltrials.gov under registry number NCT01842009. PERSPECTIVE: In this article, an optimized protocol for the treatment of fibromyalgia pain with targeted subthreshold brain stimulation using high-definition transcranial direct current stimulation is outlined.


Assuntos
Fibromialgia/terapia , Qualidade de Vida , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Idoso , Feminino , Fibromialgia/fisiopatologia , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/métodos , Medição da Dor , Limiar da Dor/fisiologia , Resultado do Tratamento
18.
Brain Imaging Behav ; 10(2): 594-603, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26091725

RESUMO

Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.


Assuntos
Transtornos de Enxaqueca/fisiopatologia , Síndrome Pós-Concussão/fisiopatologia , Adolescente , Algoritmos , Atletas , Traumatismos em Atletas/complicações , Encéfalo/fisiopatologia , Concussão Encefálica/complicações , Cognição/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Síndrome Pós-Concussão/metabolismo , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
19.
Front Comput Neurosci ; 9: 146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696875

RESUMO

Brain computer interfaces rely on machine learning (ML) algorithms to decode the brain's electrical activity into decisions. For example, in rapid serial visual presentation (RSVP) tasks, the subject is presented with a continuous stream of images containing rare target images among standard images, while the algorithm has to detect brain activity associated with target images. Here, we continue our previous work, presenting a deep neural network model for the use of single trial EEG classification in RSVP tasks. Deep neural networks have shown state of the art performance in computer vision and speech recognition and thus have great promise for other learning tasks, like classification of EEG samples. In our model, we introduce a novel spatio-temporal regularization for EEG data to reduce overfitting. We show improved classification performance compared to our earlier work on a five categories RSVP experiment. In addition, we compare performance on data from different sessions and validate the model on a public benchmark data set of a P300 speller task. Finally, we discuss the advantages of using neural network models compared to manually designing feature extraction algorithms.

20.
Brain Res ; 1606: 113-24, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25721791

RESUMO

OBJECTIVE: To investigate the neurophysiological manifestations of the mechanism underlying the effects of Mirror Visual Feedback (MVF) during manual movement. METHOD: Thirteen healthy right handed individuals were assessed while performing repeated unilateral wrist extension movements with and without MVF. The effect of MVF on EEG oscillations was studied in 3 distinct frequency ranges (low mu, high mu, low beta). RESULTS: Analysis of the low beta range showed that MVF reduces the magnitude of event-related de-synchronization (ERD) in the hemisphere contra-lateral to the moving hand. This effect reached significance when the moving hand was the dominant hand. In the analysis of the low mu range, bi-hemispheric amplification of ERD by the mirror pointed to an added effect of neural recruitment. This effect reached significance when the moving hand was the non-dominant hand. CONCLUSIONS: MVF applied during unilateral manual movement (a) attenuates hemispheric activation asymmetry, and (b) is likely to involve recruitment of the mirror neuron system. SIGNIFICANCE: As each of the above two effects reached significance only in one hand (dominant and non-dominant, respectively), clinical application of MVF might show a different level of efficacy in the treatment of right and left hemiparesis.


Assuntos
Retroalimentação Sensorial/fisiologia , Atividade Motora , Córtex Sensório-Motor/fisiologia , Ondas Encefálicas , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Punho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA