Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 86: 102315, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181657

RESUMO

Cell competition is a mechanism for cellular quality control based on cell-cell comparisons of fitness. Recent studies have unveiled a central and complex role for cell competition in cancer. Early tumors exploit cell competition to replace neighboring normal epithelial cells. Intestinal adenomas, for example, use cell competition to outcompete wild-type epithelial cells. However, oncogenic mutations do not always confer an advantage: wild-type cells can identify mutant cells and enforce their extrusion through cell competition, a process termed "epithelial defense against cancer". A particularly interesting situation emerges in metastasis: supercompetitive tumor cells encounter heterotypic partners and engage in reciprocal competition with diverging outcomes. This article sheds light on the emerging complexity of cell competition by highlighting recent studies that unveil its context dependency. Finally, we propose that tissue histomorphology implies a crucial role for cell competition at tumor invasion fronts particularly in metastases, warranting increased attention in future studies.


Assuntos
Competição entre as Células , Neoplasias , Humanos , Competição entre as Células/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/genética , Células Epiteliais , Neoplasias/genética , Neoplasias/patologia
2.
Nat Commun ; 14(1): 5024, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596278

RESUMO

A perimetastatic capsule is a strong positive prognostic factor in liver metastases, but its origin remains unclear. Here, we systematically quantify the capsule's extent and cellular composition in 263 patients with colorectal cancer liver metastases to investigate its clinical significance and origin. We show that survival improves proportionally with increasing encapsulation and decreasing tumor-hepatocyte contact. Immunostaining reveals the gradual zonation of the capsule, transitioning from benign-like NGFRhigh stroma at the liver edge to FAPhigh stroma towards the tumor. Encapsulation correlates with decreased tumor viability and preoperative chemotherapy. In mice, chemotherapy and tumor cell ablation induce capsule formation. Our results suggest that encapsulation develops where tumor invasion into the liver plates stalls, representing a reparative process rather than tumor-induced desmoplasia. We propose a model of metastases growth, where the efficient tumor colonization of the liver parenchyma and a reparative liver injury reaction are opposing determinants of metastasis aggressiveness.


Assuntos
Neoplasias Hepáticas , Animais , Camundongos , Hepatócitos , Agressão , Relevância Clínica
3.
Br J Cancer ; 127(6): 988-1013, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35650276

RESUMO

The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/patologia
4.
Neoplasia ; 23(12): 1300-1306, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798385

RESUMO

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid tumors. Based on transcriptomic classifiers, basal-like and classical PDAC subtypes have been defined that differ in prognosis. Cells of both subtypes can coexist in individual tumors; however, the contribution of either clonal heterogeneity or microenvironmental cues to subtype heterogeneity is unclear. Here, we report the spatial tumor phenotype dynamics in a cohort of patients in whom PDAC infiltrated the duodenal wall, and identify the duodenal epithelium as a distinct PDAC microniche. MATERIALS AND METHODS: We used serial multiplex quantitative immunohistochemistry (smq-IHC) for 24 proteins to phenotypically chart PDAC tumor cells in patients whose tumors infiltrated the duodenal epithelium. Additionally, we used a genetically engineered mouse model to study the PDAC cell phenotype in the small intestinal epithelium in a controlled genetic background. RESULT: We show that pancreatic cancer cells revert to non-destructive growth upon integration into the duodenal epithelium, where they adopt traits of intestinal cell differentiation, associated with phenotypical stabilization of the classical subtype. The integrated tumor cells replace epithelial cells in an adenoma-like manner, as opposed to invasive growth in the submucosa. Finally, we show that this phenomenon is shared between species, by confirming duodenal integration and phenotypic switching in a genetic PDAC mouse model. DISCUSSION: Our results identify the duodenal epithelium as a distinct PDAC microniche and tightly link microenvironmental cue to cancer transcriptional subtypes. The phenomenon of "intestinal mimicry" provides a unique opportunity for the systematic investigation of microenvironmental influences on pancreatic cancer plasticity.


Assuntos
Carcinoma Ductal Pancreático/patologia , Duodeno/patologia , Mucosa Intestinal/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo
5.
Nat Methods ; 18(8): 912-920, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253926

RESUMO

Cellular identity in complex multicellular organisms is determined in part by the physical organization of cells. However, large-scale investigation of the cellular interactome remains technically challenging. Here we develop cell interaction by multiplet sequencing (CIM-seq), an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between cell types present in a tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution into constituent cell types. CIM-seq estimates parameters such as number of cells and cell types in each multiplet directly from sequencing data, making it compatible with high-throughput droplet-based methods. When applied to gut epithelium or whole dissociated lung and spleen, CIM-seq correctly identifies known interactions, including those between different cell lineages and immune cells. In the colon, CIM-seq identifies a previously unrecognized goblet cell subtype expressing the wound-healing marker Plet1, which is directly adjacent to colonic stem cells. Our results demonstrate that CIM-seq is broadly applicable to unsupervised profiling of cell-type interactions in different tissue types.


Assuntos
Comunicação Celular , Linhagem da Célula , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Animais , Feminino , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo
6.
Oncogene ; 40(31): 4955-4966, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34172934

RESUMO

A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.


Assuntos
Suscetibilidade a Doenças , Genes ras , Neoplasias/etiologia , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Fatores Etários , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Mutação , Neoplasias/patologia , Células-Tronco Neoplásicas , Oncogenes , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
7.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498528

RESUMO

Hedgehog (Hh) signaling regulates intestinal development and homeostasis. The role of Hh signaling in cancer has been studied for many years; however, its role in colorectal cancer (CRC) remains controversial. It has become increasingly clear that the "canonical" Hh pathway, in which ligand binding to the receptor PTCH1 initiates a signaling cascade that culminates in the activation of the GLI transcription factors, is mainly organized in a paracrine manner, both in the healthy colon and in CRC. Such canonical Hh signals largely act as tumor suppressors. In addition, stromal Hh signaling has complex immunomodulatory effects in the intestine with a potential impact on carcinogenesis. In contrast, non-canonical Hh activation may have tumor-promoting roles in a subset of CRC tumor cells. In this review, we attempt to summarize the current knowledge of the Hh pathway in CRC, with a focus on the tumor-suppressive role of canonical Hh signaling in the stroma. Despite discouraging results from clinical trials using Hh inhibitors in CRC and other solid cancers, we argue that a more granular understanding of Hh signaling might allow the exploitation of this key morphogenic pathway for cancer therapy in the future.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Humanos
8.
Front Pediatr ; 6: 378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568936

RESUMO

The development of skeletal muscle from immature precursors is partially driven by canonical WNT/ß-catenin signaling. Rhabdomyosarcomas (RMS) are immature skeletal muscle-like, highly lethal cancers with a variably pronounced blockade of muscle differentiation. To investigate whether canonical ß-catenin signaling in RMS is involved in differentiation and aggressiveness of RMS, we analyzed the effects of WNT3A and of a siRNA-mediated or pharmacologically induced ß-catenin knock-down on proliferation, apoptosis and differentiation of embryonal and alveolar RMS cell lines. While the canonical WNT pathway was maintained in all cell lines as shown by WNT3A induced AXIN expression, more distal steps including transcriptional activation of its key target genes were consistently impaired. In addition, activation or inhibition of canonical WNT/ß-catenin only moderately affected proliferation, apoptosis or myodifferentiation of the RMS tumor cells and a conditional knockout of ß-catenin in RMS of Ptch del/+ mice did not alter RMS incidence or multiplicity. Together our data indicates a subordinary role of the canonical WNT/ß-catenin signaling for RMS proliferation, apoptosis or differentiation and thus aggressiveness of this malignant childhood tumor.

9.
Front Oncol ; 8: 396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319965

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. RMS frequently show Hedgehog (HH) pathway activity, which is predominantly seen in the embryonal subtype (ERMS). They also show activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling. Here we compared the therapeutic effectiveness and the impact on HH target gene expression of Smoothened (SMO) antagonists with those of the PI3K inhibitor pictilisib in ERMS with and without mutations in the HH receptor Patched1 (PTCH). Our data demonstrate that growth of ERMS showing canonical Hh signaling activity due to Ptch germline mutations is efficiently reduced by SMO antagonists. This goes along with strong downregulation of the Hh target Gli1. Likewise Ptch mutant tumors are highly responsive toward the PI3K inhibitor pictilisib, which involves modulation of AKT and caspase activity. Pictilisib also modulates Hh target gene expression, which, however, is rather not correlated with its antitumoral effects. In contrast, sporadic ERMS, which usually express HH target genes without having PTCH mutation, apparently lack canonical HH signaling activity. Thus, stimulation by Sonic HE (SHH) or SAG (Smoothened agonist) or inhibition by SMO antagonists do not modulate HH target gene expression. In addition, SMO antagonists do not provoke efficient anticancer effects and rather exert off-target effects. In contrast, pictilisib and other PI3K/AKT/mTOR inhibitors potently inhibit cellular growth. They also efficiently inhibit HH target gene expression. However, of whether this is correlated with their antitumoral effects it is not clear. Together, these data suggest that PI3K inhibitors are a good and reliable therapeutic option for all ERMS, whereas SMO inhibitors might only be beneficial for ERMS driven by PTCH mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA