Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 94(9): 1005-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27251706

RESUMO

UNLABELLED: The chemokine CXCL12/SDF-1 is crucial for heart development and affects cardiac repair processes due to its ability to attract leukocytes and stem cells to injured myocardium. However, there is a great controversy whether CXCL12 is beneficial or detrimental after myocardial infarction (MI). The divergence in the reported CXCL12 actions may be due to the cellular source and time of release of the chemokine after MI. This study was designed to evaluate the role of cardiomyocyte-derived CXCL12 for cardiogenesis and heart repair after MI. We generated two rodent models each targeting CXCL12 in only one cardiac cell type: cardiomyocyte-specific CXCL12-overexpressing transgenic (Tg) rats and CXCL12 conditional knockout (cKO) mice. Animals of both models did not show any signs of cardiac abnormalities under baseline conditions. After induction of MI, cKO mice displayed preserved cardiac function and remodeling. Moreover, fibrosis was less pronounced in the hearts of cKO mice after MI. Accordingly, CXCL12 Tg rats revealed impaired cardiac function post-MI accompanied by enhanced fibrosis. Furthermore, we observed decreased numbers of infiltrating Th1 cells in the hearts of cKO mice. Collectively, our findings demonstrate that cardiomyocyte-derived CXCL12 is not involved in cardiac development but has adverse effects on the heart after injury via promotion of inflammation and fibrosis. KEY MESSAGES: • CXCL12 in cardiomyocytes is not involved in cardiac development. • CXCL12 deficiency in cardiomyocytes improves outcome of myocardial infarction. • CXCL12 overexpression in cardiomyocytes worsens outcome of myocardial infarction. • CXCL12 increases fibrosis and invasion of Th1 cells in the heart after infarction.


Assuntos
Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Organogênese/genética , Animais , Biópsia , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Especificidade de Órgãos/genética , Prognóstico , Ratos , Ratos Transgênicos , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia
2.
Pharmacol Ther ; 129(1): 97-108, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20965212

RESUMO

Myocardial infarction is associated with persistent muscle damage, scar formation and depressed cardiac performance. Recent studies have demonstrated the clinical significance of stem cell-based therapies after myocardial infarction with the aim to improve cardiac remodeling and function by inducing the reconstitution of functional myocardium and formation of new blood vessels. Stem cell homing signals play an important role in stem cell mobilization from the bone marrow to the ischemic cardiac environment and are therefore crucial for myocardial repair. To date, the most prominent stem cell homing factor is the chemokine SDF-1α/CXCL12. This protein was shown to be significantly upregulated in many experimental models of myocardial infarction and in patients suffering from ischemic cardiac diseases, suggesting the involvement in the pathophysiology of these disorders. A number of studies focused on manipulating SDF-1α and its receptor CXCR4 as central regulators of the stem cell mobilization process. Targeted expression of SDF-1α after myocardial infarction was shown to result in increased engraftment of bone marrow-derived stem cells into infarcted myocardium. This was accompanied by beneficial effects on cardiomyocyte survival, neovascularization and cardiac function. Thus, the SDF-1/CXCR4 axis seems to be a promising novel therapeutic approach to improve post-infarction therapy by attracting circulating stem cells to remain, survive and possibly differentiate in the infarct area. This review will summarize clinical trials of stem cell therapy in patients with myocardial infarction. We further discuss the basic findings about SDF-1α in stem cell recruitment and its therapeutic implications in experimental myocardial infarction.


Assuntos
Quimiocina CXCL12/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Receptores CXCR4/metabolismo , Transplante de Células-Tronco , Células-Tronco/fisiologia , Movimento Celular , Quimiocinas/farmacologia , Quimiocinas/fisiologia , Ensaios Clínicos como Assunto , Coração/fisiopatologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica
3.
PLoS One ; 4(8): e6743, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19707545

RESUMO

Connective tissue growth factor (CTGF) is a secreted protein that is strongly induced in human and experimental heart failure. CTGF is said to be profibrotic; however, the precise function of CTGF is unclear. We generated transgenic mice and rats with cardiomyocyte-specific CTGF overexpression (CTGF-TG). To investigate CTGF as a fibrosis inducer, we performed morphological and gene expression analyses of CTGF-TG mice and rat hearts under basal conditions and after stimulation with angiotensin II (Ang II) or isoproterenol, respectively. Surprisingly, cardiac tissues of both models did not show increased fibrosis or enhanced gene expression of fibrotic markers. In contrast to controls, Ang II treated CTGF-TG mice displayed preserved cardiac function. However, CTGF-TG mice developed age-dependent cardiac dysfunction at the age of 7 months. CTGF related heart failure was associated with Akt and JNK activation, but not with the induction of natriuretic peptides. Furthermore, cardiomyocytes from CTGF-TG mice showed unaffected cellular contractility and an increased Ca(2+) reuptake from sarcoplasmatic reticulum. In an ischemia/reperfusion model CTGF-TG hearts did not differ from controls.Our data suggest that CTGF itself does not induce cardiac fibrosis. Moreover, it is involved in hypertrophy induction and cellular remodeling depending on the cardiac stress stimulus. Our new transgenic animals are valuable models for reconsideration of CTGF's profibrotic function in the heart.


Assuntos
Cardiomegalia/prevenção & controle , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Miocárdio/citologia , Angiotensina II/administração & dosagem , Animais , Sequência de Bases , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Fator de Crescimento do Tecido Conjuntivo/genética , Primers do DNA , Ativação Enzimática , Humanos , Isoproterenol/administração & dosagem , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Reação em Cadeia da Polimerase , Pressão , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA