RESUMO
Obesity is a costly and ongoing health complication in the United States and globally. Bioactive-rich foods, especially those providing polyphenols, represent an emerging and attractive strategy to address this issue. Berry-derived anthocyanins and their metabolites are of particular interest for their bioactive effects, including weight maintenance and protection from metabolic aberrations. Earlier findings from small clinical trials suggest modulation of substrate oxidation and glucose tolerance with mediation of prospective benefits attributable to the gut microbiota, but mixed results suggest appropriate anthocyanin dosing poses a challenge. The objective of this randomized, placebo-controlled study was to determine if anthocyanin-dense elderberry juice (EBJ) reproduces glucoregulatory and substrate oxidation effects observed with other berries and if this is mediated by the gut microbiota. Overweight or obese adults (BMI > 25 kg/m2) without chronic illnesses were randomized to a 5-week crossover study protocol with two 1-week periods of twice-daily EBJ or placebo (PL) separated by a washout period. Each treatment period included 4 days of controlled feeding with a 40% fat diet to allow for comparison of measurements in fecal microbiota, meal tolerance testing (MTT), and indirect calorimetry between test beverages. Eighteen study volunteers completed the study. At the phylum level, EBJ significantly increased Firmicutes and Actinobacteria, and decreased Bacteroidetes. At the genus level, EBJ increased Faecalibacterium, Ruminococcaceae, and Bifidobacterium and decreased Bacteroides and lactic acid-producing bacteria, indicating a positive response to EBJ. Supporting the changes to the microbiota, the EBJ treatment significantly reduced blood glucose following the MTT. Fat oxidation also increased significantly both during the MTT and 30 min of moderate physical activity with the EBJ treatment. Our findings confirm the bioactivity of EBJ-sourced anthocyanins on outcomes related to gut health and obesity. Follow-up investigation is needed to confirm our findings and to test for longer durations.
Assuntos
Fezes , Sucos de Frutas e Vegetais , Microbioma Gastrointestinal , Sambucus , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Fezes/microbiologia , Feminino , Sambucus/química , Pessoa de Meia-Idade , Adulto , Obesidade/microbiologia , Oxirredução , Estudos Cross-Over , Antocianinas/farmacologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Sobrepeso/microbiologia , Método Duplo-CegoRESUMO
Blueberries are rich in nutrients and (poly)phenols, popular with consumers, and a major agricultural crop with year-round availability supporting their use in food-based strategies to promote human health. Accumulating evidence indicates blueberry consumption has protective effects on cardiovascular health including vascular dysfunction (i.e., endothelial dysfunction and arterial stiffening). This narrative review synthesizes evidence on blueberries and vascular function and provides insight into underlying mechanisms with a focus on oxidative stress, inflammation, and gut microbiota. Evidence from animal studies supports beneficial impacts on vascular function. Human studies indicate acute and chronic blueberry consumption can improve endothelial function in healthy and at-risk populations and may modulate arterial stiffness, but that evidence is less certain. Results from cell, animal, and human studies suggest blueberry consumption improves vascular function through improving nitric oxide bioavailability, oxidative stress, and inflammation. Limited data in animals suggest the gut microbiome mediates beneficial effects of blueberries on vascular function; however, there is a paucity of studies evaluating the gut microbiome in humans. Translational evidence indicates anthocyanin metabolites mediate effects of blueberries on endothelial function, though this does not exclude potential synergistic and/or additive effects of other blueberry components. Further research is needed to establish the clinical efficacy of blueberries to improve vascular function in diverse human populations in a manner that provides mechanistic information. Translation of clinical research to the community/public should consider feasibility, social determinants of health, culture, community needs, assets, and desires, barriers, and drivers to consumption, among other factors to establish real-world impacts of blueberry consumption.
Assuntos
Mirtilos Azuis (Planta) , Sistema Cardiovascular , Animais , Humanos , Frutas , Sistema Cardiovascular/metabolismo , Antocianinas/farmacologia , Antocianinas/metabolismo , Inflamação/prevenção & controle , Inflamação/metabolismoRESUMO
Estrogen-deficient postmenopausal women have oxidative stress-mediated suppression of endothelial function that is exacerbated by high blood pressure. Previous research suggests blueberries may improve endothelial function through reductions in oxidative stress, while also exerting other cardiovascular benefits. The objective of this study was to examine the efficacy of blueberries to improve endothelial function and blood pressure in postmenopausal women with above-normal blood pressure, and to identify potential mechanisms for improvements in endothelial function. A randomized, double-blind, placebo-controlled, parallel-arm clinical trial was performed, where postmenopausal women aged 45-65 years with elevated blood pressure or stage 1-hypertension (total n = 43, endothelial function n = 32) consumed 22 g day-1 of freeze-dried highbush blueberry powder or placebo powder for 12 weeks. Endothelial function was assessed at baseline and 12 weeks through ultrasound measurement of brachial artery flow-mediated dilation (FMD) normalized to shear rate area under the curve (FMD/SRAUC) before and after intravenous infusion of a supraphysiologic dose of ascorbic acid to evaluate whether FMD improvements were mediated by reduced oxidative stress. Hemodynamics, arterial stiffness, cardiometabolic blood biomarkers, and plasma (poly)phenol metabolites were assessed at baseline and 4, 8, and 12 weeks, and venous endothelial cell protein expression was assessed at baseline and 12 weeks. Absolute FMD/SRAUC was 96% higher following blueberry consumption compared to baseline (p < 0.05) but unchanged in the placebo group (p > 0.05), and changes from baseline to 12 weeks were greater in the blueberry group than placebo (+1.09 × 10-4 ± 4.12 × 10-5vs. +3.82 × 10-6 ± 1.59 × 10-5, p < 0.03, respectively). The FMD/SRAUC response to ascorbic acid infusion was lower (p < 0.05) at 12 weeks compared to baseline in the blueberry group with no change in the placebo group (p > 0.05). The sum of plasma (poly)phenol metabolites increased at 4, 8, and 12 weeks in the blueberry group compared to baseline, and were higher than the placebo group (all p < 0.05). Increases in several plasma flavonoid and microbial metabolites were also noted. No major differences were found for blood pressure, arterial stiffness, blood biomarkers, or endothelial cell protein expression following blueberry consumption. These findings suggest daily consumption of freeze-dried blueberry powder for 12 weeks improves endothelial function through reduced oxidative stress in postmenopausal women with above-normal blood pressure. The clinical trial registry number is NCT03370991 (https://clinicaltrials.gov).