Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 92(11): 1201-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088215

RESUMO

UNLABELLED: The involvement of the renin-angiotensin-aldosterone system (RAAS) and cortisol in increased cardiovascular risk is well known. If numerous relationships between RAAS and corticosteroids have been described, their interactions within the arterial wall, especially during the transdifferentiation of vascular smooth muscle cells (VSMCs) and the atheroma formation, are not established. Here, we clarified the relationships between mRNA levels of corticosteroid and angiotensin system components using cortisol, fludrocortisone, and angiotensin II treatments of cultured VSMCs maintained in a contractile phenotype or induced to a lipid storing phenotype. We then determined the quantitative relationships between the mRNA content of these components measured with reverse transcription polymerase chain reaction (RT-PCR), in the atheroma plaque and nearby macroscopically intact tissue (MIT) from 27 human carotid endarterectomy samples. In both VSMC phenotypes, cortisol markedly increased both angiotensinogen (AGT) and AT1-receptor (AT1R) mRNA levels. These effects of cortisol were mediated via glucocorticoid receptor-α (GRα) without any illicit activation of the mineralocorticoid receptor (MR). Angiotensin II increased GRα, 11ßHSD1, CYP11B1, as well as CYP11B2 mRNAs and decreased AT1R in contractile VSMC; only GRα and CYP11B2 were increased in lipid storing VSMCs, while MR and AGT mRNAs decreased. In endarterectomy specimens, positive correlations between mRNA levels of AGT and aldosterone synthase or 11ßHSD1 in MIT and of AT1R and MR in atheroma were detected. The arterial tissue angiotensin system is a target for local glucocorticoids and arterial glucocorticoids for angiotensin II. Both systems appear activated in lipid storing VSMCs and strongly correlated in vivo, and their mutual amplification may contribute to the development of atheroma. KEY MESSAGE: Cortisol increases angiotensin II signaling in VSMCs via GRα. Angiotensin II stimulates cortisol signaling through increased GRα and 11ß-HSD1. Corticoid and angiotensin receptors are strongly correlated in the arterial wall. These correlations are maintained at different stages of atheroma development. An auto-amplification loop between angiotensin and cortisol signaling favors atherogenesis.


Assuntos
Corticosteroides/metabolismo , Angiotensinas/metabolismo , Artérias Carótidas/patologia , Miócitos de Músculo Liso/citologia , Placa Aterosclerótica/patologia , Idoso , Angiotensina II/metabolismo , Diferenciação Celular , Transdiferenciação Celular , Fludrocortisona/química , Humanos , Hidrocortisona/metabolismo , Lipídeos/química , Contração Muscular , Músculo Liso Vascular/citologia , Fenótipo , Placa Aterosclerótica/metabolismo , Receptores de Mineralocorticoides/metabolismo
2.
Fundam Clin Pharmacol ; 28(1): 53-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23025717

RESUMO

High cortisol and aldosterone levels increase cardiovascular risk, but the respective roles of each hormone within the arterial wall remain controversial. We tested the hypothesis that cortisol production within the arterial wall may contribute to atherosclerotic remodeling and act through illicit activation of the mineralocorticoid receptor (MR). Gene expression studies of the corticoid system components and marker genes of the atherosclerotic process in human carotid atheroma plaque and nearby macroscopically intact tissue (MIT) were considered together with clinical data and compared with pharmacological stimulations of human vascular smooth muscle cells (VSMCs) in contractile or lipid-storing phenotypes. The components of corticoid production and action were present and active within the human carotid wall and VSMCs. Atheroma plaque and lipid-storing VSMCs expressed 11ß-hydroxysteroid deshydrogenase-1 (11ß-HSD1) at two- to tenfold higher levels than MIT or contractile VSMCs. The 11ß-HSD1 expression was stimulated by cortisol and cortisone, especially in lipid-storing VSMCs. MR mRNA level was lower in atheroma and lipid-storing VSMCs and downregulated via MR by fludrocortisone and cortisol. Cortisol upregulated collagen1 and MCP-1 mRNAs via the glucocorticoid receptor (GRα), in both VSMC phenotypes, whereas fludrocortisone stimulated the collagen1 expression only in lipid-storing VSMCs. The GRα mRNA level in MIT was higher in patients with previous stroke and correlated positively with the collagen1 mRNA but negatively with diastolic blood pressure. Local cortisol production by 11ß-HSD1, and its action via high parietal GRα could be relevant from the first step of atherosclerotic remodeling and auto-amplify with transdifferentiation of VSMCs during atheroma progression.


Assuntos
Artérias/metabolismo , Hidrocortisona/metabolismo , Placa Aterosclerótica/metabolismo , Acidente Vascular Cerebral/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cortisona/genética , Cortisona/metabolismo , Fludrocortisona/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hidrocortisona/genética , Lipídeos/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , RNA Mensageiro/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Acidente Vascular Cerebral/genética
3.
Biochim Biophys Acta ; 1747(1): 47-56, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15680238

RESUMO

LVP1, a novel protein inducing lipolytic response in adipose cells, was purified from scorpion Buthus occitanus tunetanus venom. It represented 1% of crude venom proteins, with pHi approximately 6 and molecular mass of 16170 Da. In contrast to well-characterized scorpion toxins, reduction and alkylation of LVP1 revealed an heterodimeric structure. Isolated alpha and beta chains of LVP1 have a respective molecular mass of 8877 and 8807 Da as determined by mass spectrometry. The N-terminal and some internal peptide sequences of LVP1alpha and beta were determined by Edman degradation. The full amino acid sequences of both chains were deduced from nucleotide sequences of the corresponding cDNAs prepared based on peptide sequences and the 3' and 5' RACE methodologies. LVP1alpha and beta cDNAs encode a signal peptide of 22 residues and a mature peptide of 69 and 73 residues, respectively. Each mature peptide contains seven cysteines, which are compatible with an interchain disulfide bridge. The cDNA deduced protein structures share a high similarity with those of some Na+ channel scorpion toxins. LVP1 was not toxic to mice after intracerebro-ventricular injection. LVP1 stimulated lipolysis on freshly dissociated rat adipocytes in a dose-dependent manner with EC50 of approximately 1+0.5 microg/ml. LVP1 subunits did not display any lipolytic activity. As previously described for venom, beta adrenergic receptor (beta AR) antagonists interfere with LVP1 activity. Furthermore, it is shown that LVP1 competes with [3H]-CGP 12177 (beta1/beta2 antagonist) for binding to adipocyte plasma membrane with an IC50 of about 10(-7) M. These results demonstrate the existence of a new type of scorpion venom nontoxic peptides that are structurally related to Na+ channel toxins but can exert a distinct biological activity on adipocyte lipolysis through a beta-type adrenoreceptor pathway.


Assuntos
Lipólise/efeitos dos fármacos , Peptídeos/genética , Peptídeos/farmacologia , Venenos de Escorpião/química , Adipócitos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Filogenia , Ratos , Venenos de Escorpião/genética , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA