Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 325: 103116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430728

RESUMO

Essential oils (EOs) are biologically active and volatile substances that have found widespread applications in the food, cosmetics, and pharmaceutical industries. However, there are some challenges to their commercial utilization due to their high volatility, susceptibility to degradation, and hydrophobicity. In their free form, EOs can quickly evaporate, as well as undergo degradation reactions like oxidation, isomerization, dehydrogenation, or polymerization when exposed to light, heat, or air. Encapsulating EOs within mesoporous silica nanoparticles (MSNPs) could overcome these limitations and thereby broaden their usage. MSNPs may endow protection and slow-release properties to EOs, thereby extending their stability, enhancing their efficacy, and improving their dispersion in aqueous environments. This review explores and compares the design and development of different MSNP-based nanoplatforms to encapsulate, protect, and release EOs. Initially, a brief overview of the various types of available MSNPs, their properties, and their synthesis methods is given to better understand their roles as carriers for EOs. Several encapsulation technologies are then examined, including solvent-based and solvent-free methods. The suitability of each technology for EO encapsulation, as well as its impact on their stability and release, is discussed in detail. Opportunities and challenges for using EO-loaded MSNPs as preservatives, flavor enhancers, and antimicrobial agents in the food industry are then highlighted. Overall, this review aims to bridge a knowledge gap by providing a thorough understanding of EO encapsulation within MSNPs, which should facilitate the application of this technology in the food industry.


Assuntos
Anti-Infecciosos , Nanopartículas , Óleos Voláteis , Dióxido de Silício , Alimentos
2.
ACS Appl Mater Interfaces ; 16(13): 15657-15686, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518221

RESUMO

The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.

3.
Adv Mater ; 36(19): e2312474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252677

RESUMO

Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Corantes Fluorescentes/química , Animais , Imagem Óptica , Nanopartículas/química , Carbono/química
4.
Adv Colloid Interface Sci ; 321: 103020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871382

RESUMO

Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.


Assuntos
Pontos Quânticos , Eliminação de Resíduos , Embalagem de Alimentos , Alimentos , Carbono , Eletricidade
5.
Food Sci Nutr ; 11(9): 5028-5040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701198

RESUMO

Alcohol drinking is a popular activity among adolescents in many countries, largely due to its pleasant, relaxing effects. As a major concern, ethanol consumption put the drinkers at risk of nutrients' deficiency due to the disordered eating, anorexia, and malabsorption of nutrients. Moreover, alcohol drinking may lead to the development of hangover symptoms including diarrhea, thirsty, fatigue, and oxidative stress. A broad range of functional food components with antioxidant and/or anti-inflammatory properties including pectin, aloe vera polysaccharides, chito-oligosaccharides, and other herbal components have been explored due to their detoxification effects against ethanol. The underlying anti-hangover mechanisms include reducing the intestinal absorption of ethanol or its metabolites, increasing the activity of ethanol metabolizing enzymes, development of fatty acid ß-oxidation in mitochondria, inhibition of inflammatory response, blocking the target receptors of ethanol in the body, and possession of antioxidant activity under the oxidative stress developed by ethanol consumption. Therefore, the development of bioactive food-based therapeutic formula can assist clinicians and also drinkers in the alleviation of alcohol side effects.

6.
Adv Colloid Interface Sci ; 318: 102961, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515865

RESUMO

Nanocellulose has received immense consideration owing to its valuable inherent traits and impressive physicochemical properties such as biocompatibility, thermal stability, non-toxicity, and tunable surface chemistry. These features have inspired researchers to deploy nanocellulose as nanoscale reinforcement materials for bio-based polymers. A simple yet efficient characterization method is often required to gain insights into the effectiveness of various types of nanocellulose. Despite a decade of continuous research and booming growth in scientific publications, nanocellulose research lacks a measuring tool that can characterize its features with acceptable speed and reliability. Implementing reliable characterization techniques is critical to monitor the specifications of nanocellulose alone or in the final product. Many techniques have been developed aiming to measure the nano-reinforcement mechanisms of nanocellulose in polymer composites. This review gives a full account of the scientific underpinnings of techniques that can characterize the shape and arrangement of nanocellulose. This review aims to deliver consolidated details on the properties and characteristics of nanocellulose in biopolymer composite materials to improve various structural, mechanical, barrier and thermal properties. We also present a comprehensive description of the safety features of nanocellulose before and after being loaded within biopolymeric matrices.


Assuntos
Celulose , Nanocompostos , Celulose/química , Reprodutibilidade dos Testes , Polímeros/química , Nanocompostos/química , Biopolímeros
7.
Foods ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297458

RESUMO

Meeting the United Nation's sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient grains were long-forgotten due to the dominance of modern grains, but recently, they have been rediscovered as highly nutritious, healthy and resilient grains for solving the nutrition demand and food supply chain problems. This review article aims to critically examine the progress in this emerging field and discusses the potential roles of ancient grains in the fight against hunger. We provide a comparative analysis of different ancient grains with their modern varieties in terms of their physicochemical properties, nutritional profiles, health benefits and sustainability. A future perspective is then introduced to highlight the existing challenges of using ancient grains to help eradicate world hunger. This review is expected to guide decision-makers across different disciplines, such as food, nutrition and agronomy, and policymakers in taking sustainable actions against malnutrition and hunger.

8.
Adv Colloid Interface Sci ; 303: 102655, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364434

RESUMO

Essential oils (EOs) contain a complex mixture of volatile and non-volatile molecules with diverse biological activities, including flavoring, antioxidant, antimicrobial, and nutraceutical properties. As a result, EOs have numerous potential applications in the agriculture, food, and pharmaceutical industries. However, their hydrophobicity, chemical instability, and volatility pose a challenge for many of their applications. These challenges can often be overcome by encapsulation EOs in colloidal delivery systems. Over the last decade or so, nanoencapsulation and microencapsulation technologies have been widely explored for their potential to improve the handling, dispersibility, and stability of hydrophobic substances, as well as to control their release profiles (e.g., targeted, triggered, sustained, or burst release). These technologies include emulsification, coacervation, precipitation, spray-drying, spray-cooling, freeze-drying, fluidized bed coating, and extrusion. This article reviews some of the most important developments in EOs encapsulation, the physicochemical mechanisms underlying the behavior of encapsulated EOs, current challenges, and potential applications in the food and biomedical sciences. This review has found that nanoencapsulation has countless of potential advantages for the utilization of EOs in the food industry and can improve their water-dispersibility, food matrix compatibility, chemical stability, volatility, and bioactivity.


Assuntos
Óleos Voláteis , Antioxidantes , Indústria Alimentícia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
9.
ACS Appl Mater Interfaces ; 14(5): 7161-7174, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35076220

RESUMO

Graphene oxide quantum dots (GOQDs) hold great promise as a new class of high-performance carbonaceous nanomaterials due to their numerous functional properties, such as tunable photoluminescence (PL), excellent thermal and chemical stability, and superior biocompatibility. In this study, we developed a facile, one-pot, and effective strategy to engineer the interface of GOQDs through covalent doping with silicon. The successful covalent attachment of the silane dopant with pendant vinyl groups to the edges of the GOQDs was confirmed by an in-depth investigation of the structural and morphological characteristics. The Si-GOQD nanoconjugates had an average dimension of ∼8 nm, with a graphite-structured core and amorphous carbon on their shell. We further used the infrared nanoimaging based on scattering-type scanning near-field optical microscopy to unveil the spectral near-field response of GOQD samples and to measure the nanoscale IR response of its network; we then demonstrated their distinct domains with strongly enhanced near fields. The doping of Si atoms into the sp2-hybridized graphitic framework of GOQDs also led to tailored PL emissions. We then sought to explore the potential applications of Si-GOQDs on the surface of plastic films where poly(dimethylsiloxane) (PDMS) served as a bridge to tightly anchor the Si-GOQDs to the surface. The bi-layered coated films which were built with co-assembly of Si-GOQDs and PDMS contributed to suppressing the transmission of water molecules due to the generation of compact and less accessible passing sites, achieving a nearly twofold reduction in water permeability compared to the single-layered coated films. The nanoindentation and PeakForce quantitative nanomechanical mapping showed that Si-GOQD-coated substrates were softer and more deformable than those coated only with PDMS. The co-assembly of PDMS and Si-GOQDs yielded films that were less stiff than those made from PDMS alone. Our findings provided conceptual insights into the importance of nanoscale surface engineering of GOQDs in conferring excellent dispersibility and enhancing the performance of nanocomposite films.

10.
Sci Total Environ ; 815: 152684, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995611

RESUMO

Plastic pollution is recognized as a major environmental problem in many countries. Over the last decade, academics have embraced research on bioplastics to discover newer high-end green materials. However, the end-of-life environmental fate of such materials is not adequately understood. Non-isocyanate polyhydroxyurethanes (PHUs) are green engineering materials with huge potential to replace traditional polyurethanes. Despite this immense potential, a number of questions about their environmental fate remain unanswered. The present study investigated the extent and mechanisms underlying soil biodegradation of PHUs and determined whether the deterioration of PHUs within starch bioplastics (ST) can improve the biodegradation of starch (ST)-PHU hybrids. Soil microbiomes managed to effectively and quickly digest not only PHUs but also ST-PHU hybrids. All ST-PHU hybrids were characterized by exceptional biodegradability with mass losses of up to ~88% following a soil burial time of only 120 days. The biodegradation of ST-alone bioplastics was 69% under identical conditions. The presence of cellulose nanocrystals (CNC) reduced the potential for the soil microbial community to degrade nanohybrids (ST-PHU-CNC). Microbially digested bioplastics with PHU presented less stages of thermal degradation, and reduced intensities of FTIR, NMR and XPS signals compared to the original films, indicating improvement of the biodegradation mechanism. These findings suggested the positive environmental implications of PHU in improving the bioplastic's degradation and their potential for future applications.


Assuntos
Nanopartículas , Amido , Biodegradação Ambiental , Celulose , Plásticos , Solo
11.
Carbohydr Polym ; 277: 118876, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893279

RESUMO

Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.

12.
ACS Appl Mater Interfaces ; 13(30): 36558-36573, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284587

RESUMO

The use of superhydrophobic surfaces in a broad range of applications is receiving a great deal of attention due to their numerous functionalities. However, fabricating these surfaces using low-cost raw materials through green and fluorine-free routes has been a bottleneck in their industrial deployment. This work presents a facile and environmentally friendly strategy to prepare mechanically robust superhydrophobic surfaces with engineered lotus leaf mimetic multiscale hierarchical structures via a hybrid route combining soft imprinting and spin-coating. Direct soft-imprinting lithography onto starch/polyhydroxyurethane/cellulose nanocrystal (SPC) films formed micro-scaled features resembling the pillar architecture of lotus leaf. Spin-coating was then used to assemble a thin layer of low-surface-energy poly(dimethylsiloxane) (PDMS) over these microstructures. Silica nanoparticles (SNPs) were grafted with vinyltriethoxysilane (VTES) to form functional silica nanoparticles (V-SNPs) and subsequently used for the fabrication of superhydrophobic coatings. A further modification of PDMS@SPC film with V-SNPs enabled the interlocking of V-SNPs microparticles within the cross-linked PDMS network. The simultaneous introduction of hierarchical microscale surface topography, the low surface tension of the PDMS layer, and the nanoscale roughness induced by V-SNPs contributed to the fabrication of a superhydrophobic interface with a water contact angle (WCA) of ∼150° and a sliding angle (SA) of <10°. The PDMS/V-SNP@SPC films showed an ∼52% reduction in water vapor transmission rate compared to that of uncoated films. These results indicated that the coating served as an excellent moisture barrier and imparted good hydrophobicity to the film substrate. The coated film surfaces were able to withstand extensive knife scratches, finger-rubbing, jet-water impact, a sandpaper-abrasion test for 20 cycles, and a tape-peeling test for ∼10 repetitions without losing superhydrophobicity, suggesting superior mechanical durability. Self-cleaning behavior was also demonstrated when the surfaces were cleared of artificial dust and various food liquids. The green and innovative approach presented in the current study can potentially serve as an attractive new tool for the development of robust superhydrophobic surfaces without adverse environmental consequences.

13.
Carbohydr Polym ; 265: 118029, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966823

RESUMO

The challenges related to the persistence of plastics in natural ecosystems fostered strong interest in developing biodegradable bioplastics. Among natural biopolymers, starch gained both academic and industrial interest owing to its impressive physicochemical properties. The use of starch in production of polyurethane (PU) composites not only yields PUs with outstanding mechanical properties but also makes the final PU products biodegradable. The hydrophilic nature of starch limits its dispersion in hydrophobic PU polymers, although it is a significant benefit in creating starch-embedded non-isocyanate polyurethane (NIPU) composites. We present a comprehensive overview to highlight important strategies that are used to improve the compatibility of starch with various PU matrices. This review also gives an overview of the recent advances in the synthesis of starch-NIPU hybrids. Moreover, we aim to deliver critical insight into strategies that boost the biodegradation characteristics of PUs along with a discussion on various methods to assess their biodegradation.


Assuntos
Isocianatos/química , Poliuretanos/química , Amido/química , Biodegradação Ambiental , Biopolímeros/química , Interações Hidrofóbicas e Hidrofílicas , Isocianatos/síntese química , Plásticos/química , Polímeros/química , Poliuretanos/síntese química
14.
Sci Total Environ ; 775: 145871, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631573

RESUMO

Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has been a continuous endeavour to optimize the pre-treatment protocol as it is specific to lignocellulosic biomass and also depends on factors such as nature of the biomass, process and environmental parameters and economic viability. Nanofibers are primarily isolated through mechanical fibrillation while nanocrystals are predominantly extracted using acid hydrolysis. A concise overview on the ways to improve the yield of nanocellulose from cellulosic biomass is also presented in this review. This work also reviews the techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance. An assessment on the emerging application of nanocellulose with an emphasis on development of nanocomposite materials for designing environmentally sustainable products is incorporated. Finally, the status of the industrial production of nanocellulose presented, which indicates that there is a continuously increased demand for cellulose nanomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.

15.
ACS Appl Mater Interfaces ; 12(42): 47865-47878, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33040521

RESUMO

Materials based on petroleum-based resources have aroused widespread concern because of their environmental and healthcare footprints. Cellulose nanocrystals (CNCs) are at the cutting edge of current research because of their great promise in developing sustainable and high-performance materials. To establish a comprehensive understanding of the synergistic reinforcement effect of CNCs, we introduced a new method to fabricate all-green, transparent, and mechanically robust nanohybrid materials using CNCs in conjunction with gelatinized starch (GS) and polyhydroxyurethanes (PHUs). The synergistic interaction between the CNC skeleton and the GS/PHU network enabled us to span exceptionally stiff nanohybrids that could withstand up to 8.5 MPa tensile strength. The tunable mechanical properties and enhanced thermal stability in these nanohybrids primarily arise from the presence of dense hydroxyl groups on the CNCs' surface, which offer a robust scaffold for fortified hydrogen bonds to form with GS/PHU domains. The multiple intramolecular hydrogen bonds synergistically served as highly stable associations and concurrently facilitated energy dissipation and transferred the stress across the interfacial region. The rational design of the molecular interactions presented in this work provided increased opportunities to build nanohybrids with outstanding mechanical performance. More broadly, the insights afforded by this study not only delivered a better understanding on the molecular-level interactions in the CNC/GS/PHU system but also enriched the potential for the commercial exploration of tunable cellulosic nanohybrid materials.

16.
Carbohydr Polym ; 246: 116656, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747288

RESUMO

Manufacturing of multifunctional materials through blending is a promising route for improving performance of biopolymers including starch. Non-isocyanate polyurethanes (NIPUs) are an emerging group of green materials. Understanding the mechanism of interaction between starch and NIPU not only highlights underlying chemistry but also offers an opportunity to tailor the properties and functions of starch-NIPU hybrids. We investigated the interfacial interactions between starch and NIPU to pave the way towards development of high-performance green materials. Multiple analyses revealed that NIPU interacted effectively with starch chains via intermolecular hydrogen bonds. We showed that NIPU domains can efficiently interact with the small portion of starch skeleton at interfacial region and they are only moderately miscible. Incorporation of either component above certain ratio resulted in a phase separation. This work contributes towards understanding of interfacial chemistry between starch and NIPUs and enables tailoring the interface for facile engineering of starch-NIPU hybrids.


Assuntos
Dioxolanos/química , Química Verde , Poliuretanos/síntese química , Amido/química , Engenharia Química , Técnicas de Química Sintética , Etilenodiaminas , Humanos , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Carbohydr Polym ; 229: 115535, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826494

RESUMO

Green and environment-friendly polymers with comparable thermal and mechanical performance can be suitable alternatives of synthetic polymers. This paper documents the synthesis of crystallizable polyhydroxyurethanes (PHUs) through a facile, non-isocyanate and catalyst-free route with step growth polymerization of ethylene carbonate and three different diamines (1,2-ethanediamine, 1,4-butanediamine and 1,6-hexanediamine). The PHU monomers were interacted with gelatinized starch (HAGS) to synthesize HAGS/PHU hybrid materials. Both PHU monomers and hybrid materials were characterized by FT-IR, 1H NMR, 13C NMR, DSC and XRD. Hydroxyl groups of HAGS and PHUs were found to predominantly contribute to the intermolecular hydrogen bonding. The films produced using HAGS/PHU hybrid materials exhibited tuneable mechanical properties with tensile strength ranging between 1.7 MPa and 3.2 MPa and a breaking strain varying between 45% and 121%. These findings underscore the potential of non-isocyanate polyurethanes as environmentally sustainable materials and provide facile route for synthesis of HAGS/PHU hybrid materials.

18.
ACS Appl Mater Interfaces ; 11(26): 22897-22914, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180196

RESUMO

The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/patogenicidade , Infecções Bacterianas/prevenção & controle , Materiais Biocompatíveis/uso terapêutico , Antibacterianos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Materiais Biocompatíveis/química , Humanos , Polímeros/química , Polímeros/uso terapêutico , Propriedades de Superfície , Engenharia Tecidual
19.
ACS Appl Mater Interfaces ; 7(44): 24944-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488557

RESUMO

The research on a self-decontaminating surface has received significant attention because of the growth of pathogenic microorganisms on surfaces. In this study, a novel and simple technique for producing an active surface with antimicrobial functionality is demonstrated. A tethering platform was developed by grafting the biocide ampicillin (Amp) to a nanoclay and dispersing the nanoclay in a UV-curable acrylate coating applied on polypropylene films as the substrate. A coupling agent, [3-(glycidyloxy)propyl]trimethoxysilane, was used as a linker between the nanoclay and Amp. The Amp-functionalized clay was further modified with an organic surfactant to improve the compatibility with the coating. Several characterization assays, such as Fourier infrared transform analysis, thermogravimetric analysis, and X-ray diffraction, were conducted to confirm the presence of Amp in the nanoclay. Transmission electron microscopy images revealed that the clay particles were well dispersed in the coating and had a partial exfoliated morphology. The active coating surface was effective in inhibiting the growth of Gram-positive Listeria monocytogenes and Gram-negative Salmonella Typhimurium via contact. These findings suggest the potential for the development of active surfaces with the implementation of nanotechnology to achieve diverse functionalities.


Assuntos
Acrilatos/química , Ampicilina/química , Aderência Bacteriana/efeitos dos fármacos , Ágar/química , Silicatos de Alumínio , Argila , Difusão , Listeria monocytogenes/efeitos dos fármacos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Polipropilenos/química , Salmonella typhimurium/efeitos dos fármacos , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Tensoativos/química , Termogravimetria , Raios Ultravioleta , Difração de Raios X
20.
Carbohydr Polym ; 119: 85-100, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25563948

RESUMO

Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier.


Assuntos
Queijo , Gorduras na Dieta/farmacologia , Inulina/farmacologia , Prebióticos , Caseínas/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA