Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643451

RESUMO

Cisplatin (Cis) is a platinum-based antineoplastic drug used in various types of cancers. This drug can induce nephrotoxicity as a cause of acute kidney injury (AKI) by inducing oxidative stress and inflammation. Empagliflozin (Empa) is a newly developed inhibitor of sodium-glucose cotransporter-2 (SGLT2) approved as an antidiabetic medication for patients with type 2 diabetes mellitus. In addition to its blood glucose-lowering effect, Empa has been shown to exert anti-inflammatory and anti-oxidant properties. The current study aimed to investigate the protective effects of Empa on Cis-induced nephrotoxicity in rats. Male Wistar albino rats were divided into five groups, each of six rats: Sham group (received vehicle for 7 days), Control group (received vehicle for 7 days and Cis injection on day 2), Cis + Empa10 (received 10mg/kg Empa for 7 days and Cis injection on day 2), Cis + Empa30 (received 30mg/kg Empa for 7 days and Cis injection on day 2) and, Empa 30 (received 30mg/kg Empa for 7 days). One day after the last injection in each group, rats were weighed and then sacrificed to analyze the hematological, biochemical, and histological parameters. Cis markedly increased levels of inflammatory parameters such as renal tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and myeloperoxidase (MPO) activity. Notably, malondialdehyde (MDA), blood urea nitrogen (BUN), and creatinine levels were enhanced after Cis administration. Also, the chemotherapeutic agent significantly reduced antioxidant indicators such as renal catalase (CAT), glutathione peroxidase (GpX), and superoxide dismutase (SOD). Furthermore, histopathological examinations also revealed severe renal damage following Cis treatment which was improved by Empa administration. Empa treatment at both doses (10 mg/kg and 30 mg/kg) reversed Cis-induced changes in all the above renal parameters. In conclusion, Empa has protective effects on Cis-induced nephrotoxicity by inhibition of oxidative stress and inflammation.

2.
Cell Prolif ; : e13608, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336976

RESUMO

The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1141-1149, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632553

RESUMO

Ulcerative colitis is an intestinal inflammatory condition characterized by a rise in inflammatory mediator production and oxidative stress. Topiramate is an anticonvulsant agent with effectiveness on a wide range of seizures, which is anti-oxidative. This study aims to examine the protective effects of topiramate on acetic acid-induced ulcerative colitis in rats. Rats were randomly divided into four groups as follows: control, acetic acid, acetic acid + topiramate, and acetic acid + dexamethasone groups. Topiramate (100 mg/kg/day) or dexamethasone (2 mg/kg/day) was administered for six consecutive days, and ulcerative colitis was induced on the first day of the study by transrectal administration of 4% acetic acid. Four hours after the last dose of treatments, animals of each group were sacrificed, and colon tissues were removed for further macroscopic, histopathologic, and biochemical analyses. Treatment with topiramate markedly decreased colonic lesions and macroscopic scores as well as the improvement of histopathologic changes. Topiramate also effectively decreased the levels of malondialdehyde and upregulated the activity of anti-oxidative enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Our results reveal that the administration of topiramate ameliorates acetic acid-induced colitis in rats via anti-oxidative properties, and further studies may introduce it as an effective therapeutic candidate to decrease ulcerative colitis severity.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Ácido Acético/efeitos adversos , Ácido Acético/metabolismo , Topiramato/farmacologia , Colo , Glutationa/metabolismo , Colite/induzido quimicamente , Estresse Oxidativo , Dexametasona/farmacologia , Peroxidase/metabolismo
4.
Biomed Pharmacother ; 170: 115953, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064971

RESUMO

Methotrexate (MTX), a folic acid antagonist, is commonly prescribed as a cytotoxic drug to treat several conditions such as leukemia and inflammation-related diseases, including rheumatoid arthritis and psoriasis. However, its use in clinical practice has been limited due to its fatal side effects, especially hepatotoxicity. Empagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that has recently been reported to exhibit anti-inflammatory and anti-oxidative properties. This study was aimed to evaluate the effect of Empagliflozin on liver injury induced by MTX in rats. The rats were divided into five groups as control, MTX (20 mg/kg; i.p.), Empagliflozin (30 mg/kg/day; i.p.), MTX and Empagliflozin (10 and 30 mg/kg/day; i.p.). Histopathologic alterations were examined for assessment of the liver injury. Furthermore, the levels of tissue malondialdehyde (MDA) and activity of anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were evaluated. Our results revealed that treatment with Empagliflozin significantly improved histopathologic alterations, and elevated levels of AST and ALT induced by MTX administration. Additionally, altered activities of SOD, GPx, and catalase were significantly improved followed by Empagliflozin treatment. However, the higher dose of Empagliflozin was observed to have several benefits compared to the lower dose. Our data suggest that Empagliflozin might possess a protective role against MTX-induced hepatotoxicity by inhibiting oxidative stress in liver tissue.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Ratos , Animais , Metotrexato/efeitos adversos , Catalase/metabolismo , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado , Superóxido Dismutase/metabolismo
5.
Phytother Res ; 38(1): 349-367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922566

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.


Assuntos
Berberina , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
6.
ACS Chem Neurosci ; 14(21): 3883-3893, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823531

RESUMO

In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Melatonina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Melatonina/metabolismo
7.
BMC Gastroenterol ; 23(1): 332, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759154

RESUMO

BACKGROUND: Ulcerative Colitis (UC) is a disorder which oxidative stress plays a critical role in its pathogenesis. Empagliflozin (EMPA) is a sodium-glucose cotransporter-2 (SGLT2) inhibitor that has been shown to have anti-inflammatory and antioxidative effects. The aim of this study was to investigate the protective effects of EMPA on acetic acid (AA) induced colitis in rats. METHODS: A total of twenty-four rats were divided into four groups (six animals in each group) as follows: (1) Control group; (2) acetic acid (AA)-induced colitis group (AA); (3) EMPA treatment group (AA + EMPA); (4) Dexamethasone (Dexa) treatment group (AA + Dexa). Animals in pre-treatment groups received EMPA (10 mg/kg, i.p.) or dexamethasone (4 mg/kg, i.p. as reference drug) for four consecutive days before induction of colitis by intra-rectal acetic acid (4% v/v) administration. Twenty-four hours after AA administration, rats were sacrificed and the colon tissues were removed for histopathological and biochemical evaluations. RESULTS: Pretreatment with EMPA significantly decreased colon weight/length ratio (81.00 ± 5.28 mg/cm vs. 108.80 ± 5.51 mg/cm) as well as, macroscopic (2.50 ± 0.57 vs. 3.75 ± 0.25) and histological scores (3.3 ± 0.14 vs. 1.98 ± 0.14) compared to the AA-induced colitis group (p < 0.01). Pretreatment with EMPA significantly reduced malondialdehyde (MDA) (324.0 ± 15.93 vs. 476.7 ± 32.26 nmol/mg p < 0.001) and increased glutathione level (117.5 ± 4.48 vs. 94.38 ± 3.950 µmol/mg, p < 0.01) in comparison to the AA-induced colitis group. Furthermore, a significant increase in catalase (44.60 ± 4.02 vs.14.59 ± 2.03 U/mg, P < 0.01), superoxide dismutase (283.9 ± 18.11 vs. 156.4 ± 7.92 U/mg, p < 0.001), and glutathione peroxidase (10.38 ± 1.45 vs. 2.508 ± 0.37, p < 0.01) activities were observed by EMPA pretreatment when compared to the AA-induced colitis group. These results were in line with those of the reference drug. CONCLUSIONS: It is concluded that EMPA could effectively reduce the severity of tissue injury in experimental colitis. This protective effect may be related to the antioxidative effects of EMPA drug.


Assuntos
Ácido Acético , Colite , Animais , Ratos , Ácido Acético/toxicidade , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Dexametasona/farmacologia , Dexametasona/uso terapêutico
8.
J Pediatr Urol ; 19(5): 545.e1-545.e7, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394304

RESUMO

INTRODUCTION: Testicular torsion is a known urologic emergency condition and one of the common causes of infertility in males. Hence, prompt diagnosis and treatment play a crucial role in prevention of testicular injury. It has been observed that empagliflozin, a drug for management of hyperglycemia, has anti-oxidative properties against different pathologies, the most important of which are ischemia reperfusion related injuries. OBJECTIVE: This study aims to evaluate the protective effects of empagliflozin on a testicular torsion injury in adolescent rats followed by ischemia/reperfusion (I/R) phenomena. STUDY DESIGN: Thirty-six rats were randomly assigned into three groups including sham-operated group received all surgical procedures except testicular torsion-detorsion, torsion/detorsion + dimethyl sulfoxide (DMSO) as vehicle, and torsion/detorsion + empagliflozin (10 mg/kg). Testicular torsion was performed for 2 h through rotating right testis 720° in the clockwise direction. Thirty minutes before detorsion, a single intraperitoneal dose of empagliflozin was injected to treatment group. Four hours later, orchiectomy was conducted for histopathological and biochemical examinations of testicular tissue specimens. RESULTS: The malondialdehyde (MDA) content in the torsion/detorsion animals was markedly greater than in the animals under sham operated procedure. Moreover, the testicular MDA levels in the torsion/detorsion + empagliflozin group were significantly lower than in the torsion/detorsion group. Also, significant decreases observed in catalase, superoxide dismutase, and glutathione peroxidase activities in the torsion/detorsion group in comparison with sham operated group. These values were significantly improved in the empagliflozin group. Furthermore, histopathological examinations also revealed severe testicular injury which were improved by empagliflozin administration. DISCUSSION: Empagliflozin prevented increases in oxidative stress markers and subsequently reduced the tissue injury induced by torsion/detorsion in the current study. CONCLUSION: It can be concluded that administration of empagliflozin before prevents I/R related cellular damage in testicular torsion, possibly via oxidative stress inhibition.

9.
NPJ Aging ; 9(1): 9, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130863

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-ß (Aß) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.

10.
Biomed Pharmacother ; 164: 114291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257225

RESUMO

Coronavirus disease 2019 (COVID-19), is known as one of the most known challenge worldwide. Numerous studies have tried to introduce different mechanisms involved in the pathophysiology of COVID-19 and efforts in this field are also ongoing. The presence of SARS-CoV-2 RNA in feces of COVID-19 patients along with a variety of gastrointestinal symptoms may show a significant association between gut microbiota and SARS-CoV-2 infection. However, the exact mechanism indicating how SARS-CoV-2 and gut flora influence each other remains unknown. This paper aims to introduce a possible molecular mechanism based on recent findings on the association between circadian rhythm and gut flora in COVID-19 patients to express a new insight into the probable mechanism of melatonin in protection against SARS-CoV-2 infection.


Assuntos
COVID-19 , Melatonina , Humanos , Trato Gastrointestinal , Pulmão , Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , RNA Viral , SARS-CoV-2
11.
Artigo em Inglês | MEDLINE | ID: mdl-37010136

RESUMO

Methotrexate (MTX), a cytotoxic chemotherapeutic and immunosuppressant agent, is widely used in the treatment of autoimmune diseases and different types of cancers. However, its use has been limited by its life-threatening side effects, including nephrotoxicity and hepatotoxicity. The purpose of this study was to investigate the protective effect of sitagliptin on methotrexate (MTX)-induced nephrotoxicity in rats. Twenty-four rats were divided into four groups: control group, which received the vehicle for 6 days; MTX group, which received a single dose of MTX, followed by five daily doses of vehicle dosing; MTX + sitagliptin group, which received a single dose of MTX 1 h after the first sitagliptin treatment and six daily doses of sitagliptin; and sitagliptin group, which received sitagliptin for 6 days. Both MTX and sitagliptin were given as intraperitoneal injections at a dose of 20 mg/kg body weight. All rats were euthanized on the seventh day of the study. Kidney tissues were harvested and blood samples were collected. Serum levels of blood urea nitrogen (BUN) and creatinine were evaluated. Furthermore, catalase, glutathione peroxidase, superoxide dismutase activities, and malondialdehyde (MDA) levels were determined in kidney tissue. In addition, histopathological analysis was conducted. Histopathological evaluation showed that MTX-induced marked kidney injury. Biochemical analysis revealed a significant increase of BUN and creatinine in the serum of the MTX group. Furthermore, oxidative stress and depressed antioxidant system of the kidney tissues were evident in the MTX group. Sitagliptin did not affect these endpoints when administered alone, but it significantly attenuated the observed MTX-induced effects. These results suggest that sitagliptin exhibits potent anti-oxidant properties against the nephrotoxicity induced by MTX in rats.


Assuntos
Metotrexato , Insuficiência Renal , Ratos , Animais , Metotrexato/toxicidade , Fosfato de Sitagliptina/uso terapêutico , Fosfato de Sitagliptina/farmacologia , Creatinina/farmacologia , Antioxidantes , Rim/patologia , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/patologia
12.
Cell Commun Signal ; 21(1): 60, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918870

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disease worldwide, is caused by loss of neurons and synapses in central nervous system. Several causes for neuronal death in AD have been introduced, the most important of which are extracellular amyloid ß (Aß) accumulation and aggregated tau proteins. Increasing evidence suggest that targeting the process of Aß production to reduce its deposition can serve as a therapeutic option for AD management. In this regard, therapeutic interventions shown that a disintegrin and metalloproteinase domain-containing protein (ADAM) 10, involved in non-amyloidogenic pathway of amyloid precursor protein processing, is known to be a suitable candidate. Therefore, this review aims to examine the molecular properties of ADAM10, its role in AD, and introduce it as a therapeutic target to reduce the progression of the disease. Video abstract.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo
13.
J Alzheimers Dis ; 92(2): 391-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776071

RESUMO

One of the main players in apoptosis during Alzheimer's disease progression are different members of caspase family of proteases. The most well-known member of this family is caspase-3, in which alterations of its levels have been detected in samples from Alzheimer's disease patients. There are numerous intracellular factors involved in regulation of cellular apoptosis through regulation of caspase-3 activity, the most important of which is the PI3K/AKT signaling pathway. This commentary tries to highlight the probable relations between PI3K/AKT signaling pathway and caspase-3 in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Apoptose/fisiologia
14.
Cell Mol Neurobiol ; 43(1): 177-191, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35038057

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-ß plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas tau/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos beta-Amiloides/metabolismo
15.
J Basic Clin Physiol Pharmacol ; 34(3): 405-407, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390234

RESUMO

COVID-19 is a rapidly spreading disease, causing a global pandemic. It is circulating in multiple countries and causing a series of respiratory infections. Due to the uncertain safety and efficacy of the vaccines and lack of specific medicines, it's important to investigate new pharmacological procedures and find out new drugs that help us eradicate this pandemic. We suggest the hypothesis that Notopterol (NOT), the main Secondary metabolite of Notopterygium incisum Ting ex H.T (a common Chinese medicinal herb), may have the potential benefits on SARS-CoV2 infection for this reasons: (a) NOT exhibits anti-inflammatory, anticancer, and anti-angiogenic properties, (b) NOT indicates a significant reduction in cytokines and chemokines releasing including TNFa, IL-6, interferon-γ, which may decrease COVID-19 cytokine storm (c) NOT can suppress the expression of genes which leads to inflammation via Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway. It is exactly acting like tocilizumab, (an approved drug against COVID-19) and (d) Notopterygium incisum has antiviral activity against influenza virus, it can reduce the viral-induced oxidative stress. By these explanations, it is hopeful that NOT may be effective in COVID-19 infections which needs further investigations to examine Notopterol as a beneficial agent against the SARS-CoV2 infection.


Assuntos
COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Transdução de Sinais
16.
J Alzheimers Dis ; 91(1): 71-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36442198

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Although the main cause of the onset and development of AD is not known yet, neuronal death due to pathologic changes such as amyloid-ß (Aß) deposition, tau aggregation, neuroinflammation, oxidative stress, and calcium dyshomeostasis are considered to be the main cause. At the present, there is no cure for this insidious disorder. However, accurate identification of molecular changes in AD can help provide new therapeutic goals. Caspases are a group of proteases which are known because of their role in cellular apoptosis. In addition, different caspases are involved in other cellular responses to the environment, such as induction of inflammation. Emerging evidence suggest that these proteases play a central role in AD pathophysiology due to their role in the processing of amyloid-ß protein precursor, tau cleavage, and neuroinflammation. Therefore, it seems that targeting caspases may be a suitable therapeutic option to slow the progression of AD. This review focuses on the role of caspases in AD pathophysiology and introduce results from studies targeted caspases in different models of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Caspases/metabolismo , Doenças Neuroinflamatórias , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
17.
Pestic Biochem Physiol ; 188: 105258, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464363

RESUMO

Phosphine (PH3), from hydrolysis of magnesium, zinc, and aluminum phosphide (AlP), is a rodenticide and insecticide which is used to avoid losses of the agriculture products. However, using of this agent may affect the human health, in a way that poisoning with AlP has a high rate of mortality and morbidities. This study determined the ameliorative effects of metformin (MET) on AlP-induced hepato- and nephro-toxicity in Wistar rats. Male rats were randomly divided into four experimental groups. Group I was the control group received coconut oil by oral gavage, group II was the model group received AlP (12 mg/kg) distributed in coconut oil by oral gavage, group III received MET (200 mg/kg; i.p.), and group IV received MET (200 mg/kg; i.p.) 30 min after intoxication. After 24 h, the serum, liver and kidney tissues were collected for histopathological and biochemical investigations. The levels of kidney function markers, blood urea nitrogen and creatinine, and liver function markers, ALP, AST and ALT, in the plasma were increased significantly followed by AlP intoxication. The results revealed that phosphine causes a significant enhancement of lipid peroxidation, while decreases the activity of superoxide dismutase in both liver and kidney tissues. Furthermore, phosphine significantly induced the up-regulation of TNF-α and phosphorylation of NF-κB in target tissues. Overall, treatment with MET abolished aforementioned alterations resulted by AlP intoxication. Furthermore, histological evaluation indicated a deleterious effect of AlP on the liver and kidney tissues along with marked increase in kidney and liver injury scores, which is mitigated by MET administration. According to our results, although metformin could not bring the changes to the level of the control group, it was indicated that this drug might possess a protective effect against AlP-induced hepato and nephrotoxicity by inhibiting inflammatory responses and oxidative stress.


Assuntos
Metformina , Humanos , Ratos , Animais , Metformina/farmacologia , Óleo de Coco , Ratos Wistar , Fígado
18.
J Alzheimers Dis ; 90(2): 529-534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155520

RESUMO

In recent years, the association between the activity of platelets and risk of Alzheimer's disease (AD) risk has been noticed in numerous studies. However, there in no investigations on the role of specific intracellular pathways to explain this connection. The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is one of the main regulators of cell survival which regulates cellular responses to environmental changes. This pathway also regulates the activity of platelets, and its aberrant activity has been linked to platelet dysfunction in different pathologies. On the other hand, the PI3K/AKT pathway regulates amyloid-ß (Aß) production through regulation of amyloid-ß protein precursor (AßPP), BACE-1, ADAMs, and γ-secretase. In addition, alterations in the activity of all of these factors in platelets has been shown in AD-related pathologies. Therefore, this paper aims to introduce the PI3K/AKT pathway as a molecular inducer of platelet dysfunction during aging and AD progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ativação Plaquetária
19.
BMC Pharmacol Toxicol ; 23(1): 59, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932053

RESUMO

BACKGROUND: Testicular torsion is a pathological condition which needs emergency surgical intervention. However, after surgical reperfusion, oxidative stress factors cause to germ cell apoptosis. The study was planned to evaluate the efficacy of simultaneous use of Cyclosporine A (CsA) and Nortriptyline (Nort) to repair testicular damages in an experimental torsion/detorsion (T/D) rat model. METHODS: Male rats (n = 112) were allocated into 7 groups 16 each in; (Group 1); Control group, (Group 2); T/D group, (Group 3-4); CsA 1 and 5 mg/kg, (Group 5-6); Nort 2 and 10 mg/kg and (Group 7); concurrent group, CsA (1 mg/kg) + Nort (2 mg/kg). Right uni-lateral torsion was inducted by twisting testis 720 degrees in the clockwise direction for 1 h. For short-term and mid-term studies, lipid peroxidation, antioxidant enzyme activities, caspase-3 level, histopathological changes and germ cell apoptosis were evaluated. Moreover, in long-term investigation, semen analysis was performed. RESULTS: After T/D induction, testis abnormalities both functional and structural were appeared. Pre- and post-treatment with CsA and Nort, separately, reduced MDA and caspase-3 levels, normalized antioxidant levels, ameliorate tissue injury and improved sperm criteria. CONCLUSION: The antioxidant and anti-apoptotic characteristics of CsA and Nort and their protective effects have been shown in our study. Concurrent administration of CsA and Nort in selected low-dose indicated a significant positive effect as compared to the individual drug interventions on the reversal of T/D induced oxidative stress in short-term, apoptosis, and histologic changes in mid-term, as well as semen criteria in the long-term appraisal.


Assuntos
Ciclosporina , Traumatismo por Reperfusão , Animais , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Células Germinativas/metabolismo , Células Germinativas/patologia , Isquemia/complicações , Isquemia/metabolismo , Isquemia/patologia , Masculino , Nortriptilina/metabolismo , Nortriptilina/farmacologia , Estresse Oxidativo , Ratos , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Sêmen/metabolismo , Espermatozoides , Testículo
20.
Neurochem Res ; 47(10): 2954-2962, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802286

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Doença de Alzheimer/tratamento farmacológico , Flavonoides , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA