Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709781

RESUMO

Ship design involves optimizing the hull in order to enhance safety, economic efficiency, and technical efficiency. Despite the long-term research on this problem and a number of significant conclusions, some of its content still needs to be improved. In this study, block and midship coefficients are incorporated to optimize the ship's hull. The considered ship was a patrol vessel. The seakeeping analysis was performed employing strip theory. The hull form was generated using a fuzzy model. Though the body lines generated by the midship coefficient (CM) and block coefficient (CB) varied indecently, the other geometric parameters remained the same. Multi-objective optimization was used to optimize CB and CM. According to the results of this study, these coefficients have a significant impact on the pitch motion of the patrol vessel as well as the motion sickness index. Heave and roll motions, as well as the added resistance, were not significantly influenced by the coefficients of CM and CB. However, increasing the hull form parameters increases the maximum Response Amplitude Operator (RAO) of heave and roll motions. The frequency of occurrence of the maximum roll RAO was in direct relation with CB and CM. These coefficients, however, had no meaningful impact on the occurrence frequency of other motion indices. In the end, the CB and CM coefficients were selected based on the vessel's seakeeping performance. These findings might be used by shipbuilders to construct the vessel with more efficient seakeeping performance.


Assuntos
Navios , Humanos , Modelos Teóricos , Movimento (Física) , Lógica Fuzzy , Desenho de Equipamento
2.
Heliyon ; 9(11): e21144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920481

RESUMO

The aerodynamic interaction between a helicopter and a trimaran ship's flight deck can be complex and have an impact on handling quality and performance, especially in turbulent conditions. This article presents research on the flight deck geometry of a trimaran vessel without the presence of a helicopter. Both Particle Image Velocimetry (PIV) and computational fluid dynamics (CFD) were used to analyze the effect of wind velocity on air pressure in the flight deck region. The study proposed and evaluated different geometries of the top structure at several air velocities to minimize pressure differences. The results of the numerical simulation were validated by experimental measurements using PIV, which showed that the effect of the Reynolds number on the non-dimensional pressure near the top structure is negligible except for the biggest Reynolds number (Re = 50e6), while at x/L = 0.5 the significant difference can be seen, however, the same result found for Re = 38e6 and 50e6. At the farthest distance (x/L = 1), the pressure difference for different Reynolds numbers case studies is negligible. Among the various geometries assessed, the maximum non-dimensional pressure differences along the lines show the highest value occurs for the base geometry (A) while geometries C and F show lower values, which have chamfering along the middle and side horizontal edges at a 45-degree angle and chamfering along all vertical and horizontal edges at a 30-degree angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA